1
|
Wu J, Jiao L, Che X, Zhu X, Yuan X. Nutrient allocation patterns of Picea crassifolia on the eastern margin of the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1155-1167. [PMID: 38499792 DOI: 10.1007/s00484-024-02655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
It can provide a basis for decision making for the conservation and sustainable use of forest ecosystems in mountains to understand the stoichiometric properties and nutrient allocation strategies of major tree species. However, the plant nutrient allocation strategies under different environmental gradients in forest systems of arid and semi-arid mountains are not fully understand. Therefore, three typical regions in the Qilian Mountains on the eastern edge of the Qinghai-Tibet Plateau were selected based on precipitation and temperature gradients, and the stoichiometric characteristics and nutrient allocation strategies of Qinghai spruce (Picea crassifolia) of the dominant tree species under different environmental gradients were investigated. The results showed that (1) the stoichiometric characteristics of plant tissues were different in the three regions. (2) The importance of each tissue in the plant nutrient allocation varied in different regions, showing that the plant roots are more important in the warm-wet region, while the plant leaves, branches and trunks are more important in the transition and hot-dry regions. (3) The influencing factors affecting plant nutrient allocation strategies were inconsistent across regions, which showed that plant nutrient allocation strategies in the warm-wet and transition region were mainly influenced by soil factors, while they were more influenced by climatic factors in the hot-dry region. The patterns of plant nutrient allocation strategies and drivers under different environmental gradients could help us better understand the ecological adaptation mechanism and physiological adjustment mechanism of forest ecosystem in mountains.
Collapse
Affiliation(s)
- Jingjing Wu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China.
| | - Xichen Che
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xuli Zhu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Yuan
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Zhang X, Cao Q, Chen H, Quan Q, Li C, Dong J, Chang M, Yan S, Liu J. Effect of Vegetation Carryover and Climate Variability on the Seasonal Growth of Vegetation in the Upper and Middle Reaches of the Yellow River Basin. REMOTE SENSING 2022; 14:5011. [DOI: 10.3390/rs14195011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Vegetation dynamics are often affected by climate variability, but the past state of vegetation has a non-negligible impact on current vegetation growth. However, seasonal differences in the effects of these drivers on vegetation growth remain unclear, particularly in ecologically fragile areas. We used the normalized difference vegetation index (NDVI), gross primary productivity (GPP), and leaf area index (LAI) to describe the vegetation dynamic in the upper and middle reaches of the Yellow River basin (YRB). Three active vegetation growing seasons (early, peak, and late) were defined based on phenological metrics. In light of three vegetation indicators and the climatic data, we identified the correlation between the inter-annual variation of vegetation growth in the three sub-seasons. Then, we quantified the contributions of climate variability and the vegetation growth carryover (VGC) effect on seasonal vegetation greening between 2000–2019. Results showed that both the vegetation coverage and productivity in the study area increased over a 20-year period. The VGC effect dominated vegetation growth during the three active growing seasons, and the effect increased from early to late growing season. Vegetation in drought regions was found to generally have a stronger vegetation carryover ability, implying that negative disturbances might have severer effects on vegetation in these areas. The concurrent seasonal precipitation was another positive driving factor of vegetation greening. However, sunshine duration, including its immediate and lagged impacts, had a negative effect on vegetation growth. In addition, the VGC effect can sustain into the second year. The VGC effect showed that initial ecological restoration and sustainable conservation would promote vegetation growth and increase vegetation productivity. This study provides a comprehensive perspective on understanding the climate–vegetation interactions on a seasonal scale, which helps to accurately predict future vegetation dynamics over time in ecologically fragile areas.
Collapse
Affiliation(s)
- Xinru Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qian Cao
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Hao Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Quan Quan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710054, China
| | - Changchao Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Junyu Dong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengjie Chang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shuwan Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|