1
|
Sichalwe KL, Kayondo I, Edema R, Dramadri IO, AAdjei E, Kulembeka H, Kimani W, Mgonja D, Rubahaiyo P, Kanju E. Genetic diversity and population structure of Uganda cassava germplasm. J Appl Genet 2024; 65:683-691. [PMID: 39012576 DOI: 10.1007/s13353-024-00892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Cassava (Manihot esculenta Crantz) holds significant economic importance globally. Evaluating a diverse range of germplasm based on molecular characteristics not only enhances its preservation but also supports its utilization in breeding programs. In this study, we assessed genetic diversity and population structure among 155 cassava genotypes from Uganda using 5247 single nucleotide polymorphism (SNP) markers. Genotyping by sequencing (GBS) was employed for SNP discovery and to evaluate genetic diversity and population structure using the ADMIXTURE software. The cassava accessions comprised two populations: 49 accessions from Ugandan lines and 106 accessions resulting from crosses between South American and Ugandan lines. The average call rate of 96% was utilized to assess marker polymorphism. Polymorphic information content values of the markers ranged from 0.1 to 0.5 with an average of 0.4 which was moderately high. The principal component analysis (PCA) showed that the first two components captured ~ 24.2% of the genetic variation. The average genetic diversity was 0.3. The analysis of molecular variance (AMOVA) indicated that 66.02% and 33.98% of the total genetic variation occurred within accessions and between sub-populations, respectively. Five sub-populations were identified based on ADMIXTURE structure analysis (K = 5). Neighbor-joining tree and hierarchical clustering tree revealed the presence of three different groups which were primarily based on the source of the genotypes. The results suggested that there was considerable genetic variation among the cassava genotypes which is useful in cassava improvement and conservation efforts.
Collapse
Affiliation(s)
- Karoline Leonard Sichalwe
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
- Tanzania Agricultural Research Institute, Kibaha, Tanzania.
| | - Ismail Kayondo
- International Institute of Tropical Agriculture, Plot 25 Mikocheni Industrial Area, Mwenge Coca-Cola Road, Mikocheni Dar Es Salaam, Tanzania
| | - Richard Edema
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Isaac O Dramadri
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Emmanuel AAdjei
- CSIR- Savannah Agriculture Research Institute, Tamale, Ghana
| | | | - Wilson Kimani
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Doreen Mgonja
- Tanzania Agricultural Research Institute, Kibaha, Tanzania
| | - Patrick Rubahaiyo
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Edward Kanju
- International Institute of Tropical Agriculture, Plot 25 Mikocheni Industrial Area, Mwenge Coca-Cola Road, Mikocheni Dar Es Salaam, Tanzania
| |
Collapse
|
2
|
Yao X, Liang X, Chen Q, Liu Y, Wu C, Wu M, Shui J, Qiao Y, Zhang Y, Geng Y. MePAL6 regulates lignin accumulation to shape cassava resistance against two-spotted spider mite. FRONTIERS IN PLANT SCIENCE 2023; 13:1067695. [PMID: 36684737 PMCID: PMC9853075 DOI: 10.3389/fpls.2022.1067695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The two-spotted spider mite (TSSM) is a devastating pest of cassava production in China. Lignin is considered as an important defensive barrier against pests and diseases, several genes participate in lignin biosynthesis, however, how these genes modulate lignin accumulation in cassava and shape TSSM-resistance is largely unknown. METHODS To fill this knowledge gap, while under TSSM infestation, the cassava lignin biosynthesis related genes were subjected to expression pattern analysis followed by family identification, and genes with significant induction were used for further function exploration. RESULTS Most genes involved in lignin biosynthesis were up-regulated when the mite-resistant cassava cultivars were infested by TSSM, noticeably, the MePAL gene presented the most vigorous induction among these genes. Therefore, we paid more attention to dissect the function of MePAL gene during cassava-TSSM interaction. Gene family identification showed that there are 6 MePAL members identified in cassava genome, further phylogenetic analysis, gene duplication, cis-elements and conserved motif prediction speculated that these genes may probably contribute to biotic stress responses in cassava. The transcription profile of the 6 MePAL genes in TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation pattern. To further elucidate the potential correlation between MePAL expression and TSSM-resistance, the most strongly induced gene MePAL6 were silenced using virus-induced gene silencing (VIGS) assay, we found that silencing of MePAL6 in SC9 not only simultaneously suppressed the expression of other lignin biosynthesis genes such as 4-coumarate--CoA ligase (4CL), hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but also resulted in decrease of lignin content. Ultimately, the suppression of MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance. DISCUSSION This study accurately identified MePAL6 as critical genes in conferring cassava resistance to TSSM, which could be considered as promising marker gene for evaluating cassava resistance to insect pest.
Collapse
Affiliation(s)
- Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jun Shui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yao Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yue Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|