1
|
Verma E, Choi MH, Kar N, Baker LA, Skrabalak SE. Bridging colloidal and electrochemical syntheses of metal nanocrystals with seeded electrodeposition for tracking single nanocrystal growth. NANOSCALE 2024; 16:8002-8012. [PMID: 38535987 DOI: 10.1039/d4nr00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal nanocrystals (NCs) produced by colloidal synthesis have a variety of structural features, such as different planes, edges, and defects. Even from the best colloidal syntheses, these characteristics are distributed differently in each NC. This inherent heterogeneity can play a significant role in the properties displayed by NCs. This manuscript reports the use of electrochemistry to synthesize Au NCs in a system evaluated to track individual NC growth trajectories as a first step toward rapid identification of NCs with different structural features. Au nanocubes were prepared colloidally and deposited onto a glassy carbon electrode using either electrospray or an airbrush, resulting in well-spaced Au nanocubes. The Au nanocubes then served as seeds as gold salt was reduced to deposit metal at constant potential. Deposition at constant potential facilitates overgrowth on the Au nanocubes to achieve new NC shapes. The effects of applied potential, deposition time, precursor concentration, and capping agents on NC shape evolution were studied. The outcomes are correlated to results from traditional colloidal syntheses, providing a bridge between the two synthetic strategies. Moreover, scanning electron microscopy was used to image the same NCs before and after deposition, linking individual seed features to differences in deposition. This ability is anticipated to enable tracking of individual growth trajectories of NCs to elucidate sources of heterogeneity in NC syntheses.
Collapse
Affiliation(s)
- Ekta Verma
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana, 47405, USA.
| | - Myung-Hoon Choi
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Nabojit Kar
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana, 47405, USA.
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana, 47405, USA.
| |
Collapse
|
2
|
Park EJ, Ha TH. Pb 2+ Ion Sensors Employing Gold Etching Process: Comparative Investigation on Au Nanorods and Au Nanotriangles. SENSORS (BASEL, SWITZERLAND) 2024; 24:497. [PMID: 38257590 PMCID: PMC10820728 DOI: 10.3390/s24020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The leaching phenomenon of gold (Au) nanomaterials by Pb2+ ions in the presence of 2-mercaptoethanol (2-ME) and thiosulfate (S2O32- ion) has been systematically applied to a Pb2+ ion sensor. To further investigate the role of Pb2+ ions in sensors containing Au nanomaterials, we revisited the leaching conditions for Au nanorods and compared them with the results for Au nanotriangles. By monitoring the etching rate, it was revealed that Pb2+ ions were important for the acceleration of the etching rate mainly driven by 2-ME and S2O32- pairs, and nanomolar detection of Pb2+ ions were shown to be promoted through this catalytic effect. Using the etchant, the overall size of the Au nanorods decreased but showed an unusual red-shift in UV-Vis spectrum indicating increase of aspect ratio. Indeed, the length of Au nanorods decreased by 9.4% with the width decreasing by 17.4% over a 30-min reaction time. On the other hand, the Au nanotriangles with both flat sides surrounded mostly by dense Au{111} planes showed ordinary blue-shift in UV-Vis spectrum as the length of one side was reduced by 21.3%. By observing the changes in the two types of Au nanomaterials, we inferred that there was facet-dependent alloy formation with lead, and this difference resulted in Au nanotriangles showing good sensitivity, but lower detection limits compared to the Au nanorods.
Collapse
Affiliation(s)
- Eun Jin Park
- Core Research Facility and Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tai Hwan Ha
- Core Research Facility and Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Fu J, Mooraj S, Ng AK, Zhu C, Chen W, Detsi E. Sub-100 mA/cm 2 CO 2-to-CO Reduction Current Densities in Hierarchical Porous Gold Electrocatalysts Made by Direct Ink Writing and Dealloying. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276347 DOI: 10.1021/acsami.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While most research efforts on CO2-to-CO reduction electrocatalysts focus on boosting their selectivity, the reduction rate, directly proportional to the reduction current density, is another critical parameter to be considered in practical applications. This is because mass transport associated with the diffusion of reactant/product species becomes a major concern at a high reduction rate. Nanostructured Au is a promising CO2-to-CO reduction electrocatalyst for its very high selectivity. However, the CO2-to-CO reduction current density commonly achieved in conventional nanostructured Au electrocatalysts is relatively low (in the range of 1-10 mA/cm2) for practical applications. In this work, we combine direct ink writing-based additive manufacturing and dealloying to design a robust hierarchical porous Au electrocatalyst to improve the mass transport and achieve high CO2-to-CO reduction current densities on the order of 64.9 mA/cm2 with CO partial current density of 33.8 mA/cm2 at 0.55 V overpotential using an H-cell configuration. Although the current density achieved in our robust hierarchical porous Au electrocatalyst is one order of magnitude higher than the one achieved in conventional nanostructured electrocatalysts, we found that the selectivity of our system is relatively low, namely 52%, which suggests that mass transport remains a critical issue despite the hierarchical porous architecture. We further show that the bulk dimension of our electrocatalyst is a critical parameter governing the interplay between selectivity and reduction rate. The insights gained in this work shed new light on the design of electrocatalysts toward scale-up CO2 reduction and beyond.
Collapse
Affiliation(s)
- Jintao Fu
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Shahryar Mooraj
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003-2210, United States
| | - Alexander K Ng
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Cheng Zhu
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Wen Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003-2210, United States
| | - Eric Detsi
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
4
|
Tuleushova N, Amanova A, Abdellah I, Benoit M, Remita H, Cornu D, Holade Y, Tingry S. Radiolysis-Assisted Direct Growth of Gold-Based Electrocatalysts for Glycerol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111713. [PMID: 37299616 DOI: 10.3390/nano13111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth of monometallic gold and bimetallic gold-silver nanostructured particles. We revised the gamma radiolysis procedure to generate free-standing Au and Au-Ag nano- and micro-structured particles onto a gas diffusion electrode by the immersion of the substrate in the reaction mixture. The metal particles were synthesized by radiolysis on a flat carbon paper in the presence of capping agents. We have integrated different methods (SEM, EDX, XPS, XRD, ICP-OES, CV, and EIS) to examine in detail the as-synthesized materials and interrogate their electrocatalytic efficiency for glycerol oxidation under baseline conditions to establish a structure-performance relationship. The developed strategy can be easily extended to the synthesis by radiolysis of other types of ready-to-use metal electrocatalysts as advanced electrode materials for heterogeneous catalysis.
Collapse
Affiliation(s)
- Nazym Tuleushova
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Aisara Amanova
- Institut de Chimie Physique, UMR 8000-CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Ibrahim Abdellah
- Institut de Chimie Physique, UMR 8000-CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Mireille Benoit
- Institut de Chimie Physique, UMR 8000-CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Hynd Remita
- Institut de Chimie Physique, UMR 8000-CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - David Cornu
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Yaovi Holade
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Sophie Tingry
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| |
Collapse
|
5
|
Yoshida S, Sampei M, Todoroki N, Hisamura E, Nakao K, Albrecht K, Wadayama T. Surface modification of gold by carbazole dendrimers for improved carbon dioxide electroreduction. Chem Commun (Camb) 2023; 59:3459-3462. [PMID: 36866754 DOI: 10.1039/d3cc00350g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Four types of carbazole dendrimers were applied as modification molecules of Au surfaces to improve carbon dioxide electroreduction. The reduction properties depended on the molecular structures: the highest activity and selectivity to CO was achieved by 9-phenylcarbazole, probably caused by the charge transfer from the molecule to Au.
Collapse
Affiliation(s)
- Sota Yoshida
- Graduate School of Environmental Studies, Tohoku University, 6-2-2 Aramakiaza-Aoba Aoba-ku, Sendai 980-8579, Japan.
| | - Masaki Sampei
- Graduate School of Environmental Studies, Tohoku University, 6-2-2 Aramakiaza-Aoba Aoba-ku, Sendai 980-8579, Japan.
| | - Naoto Todoroki
- Graduate School of Environmental Studies, Tohoku University, 6-2-2 Aramakiaza-Aoba Aoba-ku, Sendai 980-8579, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Eri Hisamura
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kohei Nakao
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Ken Albrecht
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Toshimasa Wadayama
- Graduate School of Environmental Studies, Tohoku University, 6-2-2 Aramakiaza-Aoba Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
6
|
Anantharaj S, Karthik PE, Noda S. Ambiguities and best practices in the determination of active sites and real surface area of monometallic electrocatalytic interfaces. J Colloid Interface Sci 2023; 634:169-175. [PMID: 36535156 DOI: 10.1016/j.jcis.2022.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Determining the number of electrocatalytically accessible sites (ECAS) and real surface area (RSA) for any given electrocatalyst precisely is important in energy conversion electrocatalysis as these are directly used in the determination of intrinsic activity markers. For monometallic electrocatalysts and electrocatalysts of just one type of active site, there believed to be ways of making precise determination of ECAS and RSA using underpotential deposition (UPD), stripping, and redox-charge integration employing transient voltammetric sweeping techniques. This transient nature of sweeping techniques makes the determination of ECAS and RSA relatively less reliable. This study is directed at examining the effects of scan rate in the determination of ECAS and RSA taking Ni(OH)2/CC and Pt wire as model catalytic electrodes. The results suggest that the scan rate and the determined ECAS and RSA values are inversely related and the lowest possible scan rate set experiment was witnessed to give the highest possible ECAS or RSA values with LSV/CV.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Pitchiah E Karthik
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni ro, Seongdong-gu, Seoul 04763, Republic of Korea; TCG Centers for Research and Education in Science and Technology, Research Institute for Sustainable Energy, BIPL Building, Salt Lake Sector V 700091, Kolkata, India
| | - Suguru Noda
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
7
|
Wu CW, Chiang MH, Lee CL. Pd@Au Core-Shell Octahedral, Truncated Octahedral, and Cubic Nanocrystals as Nonenzymatic Glucose Sensors for Drinks. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Preferential deposition of gold and platinum atom on palladium nanocube as catalysts for oxidizing glucose in the phosphate-buffered solution. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Influence of the synthesis route on the electrocatalytic performance for ORR of citrate-stabilized gold nanoparticles. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Hochfilzer D, Tiwari A, Clark EL, Bjørnlund AS, Maagaard T, Horch S, Seger B, Chorkendorff I, Kibsgaard J. In Situ Analysis of the Facets of Cu-Based Electrocatalysts in Alkaline Media Using Pb Underpotential Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1514-1521. [PMID: 35044193 DOI: 10.1021/acs.langmuir.1c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Establishing relationships between the surface atomic structure and activity of Cu-based electrocatalysts for CO2 and CO reduction is hindered by probable surface restructuring under working conditions. Insights into these structural evolutions are scarce as techniques for monitoring the surface facets in conventional experimental designs are lacking. To directly correlate surface reconstructions to changes in selectivity or activity, the development of surface-sensitive, electrochemical probes is highly desirable. Here, we report the underpotential deposition of lead over three low index Cu single crystals in alkaline media, the preferred electrolyte for CO reduction studies. We find that underpotential deposition of Pb onto these facets occurs at distinct potentials, and we use these benchmarks to probe the predominant facet of polycrystalline Cu electrodes in situ. Finally, we demonstrate that Cu and Pb form an irreversible surface alloy during underpotential deposition, which limits this method to investigating the surface atomic structure after reaction.
Collapse
Affiliation(s)
- Degenhart Hochfilzer
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Aarti Tiwari
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ezra L Clark
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anton Simon Bjørnlund
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Thomas Maagaard
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Sebastian Horch
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Brian Seger
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ib Chorkendorff
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jakob Kibsgaard
- SurfCat Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
11
|
UV-assisted anchoring of gold nanoparticles into TiO2 nanotubes for oxygen electroreduction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Plaza-Mayoral E, Sebastián-Pascual P, Dalby KN, Jensen KD, Chorkendorff I, Falsig H, Escudero-Escribano M. Preparation of high surface area Cu‐Au bimetallic nanostructured materials by co‐electrodeposition in a deep eutectic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Kim J, Choi S, Cho J, Kim SY, Jang HW. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS MATERIALS AU 2021; 2:1-20. [PMID: 36855696 PMCID: PMC9888646 DOI: 10.1021/acsmaterialsau.1c00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom catalysts (SACs) have recently emerged as the ultimate solution for overcoming the limitations of traditional catalysts by bridging the gap between homogeneous and heterogeneous catalysts. Atomically dispersed identical active sites enable a maximal atom utilization efficiency, high activity, and selectivity toward the wide range of electrochemical reactions, superior structural robustness, and stability over nanoparticles due to strong atomic covalent bonding with supports. Mononuclear active sites of SACs can be further adjusted by engineering with multicomponent elements, such as introducing dual-metal active sites or additional neighbor atoms, and SACs can be regarded as multicomponent SACs if the surroundings of the active sites or the active sites themselves consist of multiple atomic elements. Multicomponent engineering offers an increased combinational diversity in SACs and unprecedented routes to exceed the theoretical catalytic performance limitations imposed by single-component scaling relationships for adsorption and transition state energies of reactions. The precisely designed structures of multicomponent SACs are expected to be responsible for the synergistic optimization of the overall electrocatalytic performance by beneficially modulating the electronic structure, the nature of orbital filling, the binding energy of reaction intermediates, the reaction pathways, and the local structural transformations. This Review demonstrates these synergistic effects of multicomponent SACs by highlighting representative breakthroughs on electrochemical conversion reactions, which might mitigate the global energy crisis of high dependency on fossil fuels. General synthesis methods and characterization techniques for SACs are also introduced. Then, the perspective on challenges and future directions in the research of SACs is briefly summarized. We believe that careful tailoring of multicomponent active sites is one of the most promising approaches to unleash the full potential of SACs and reach the superior catalytic activity, selectivity, and stability at the same time, which makes SACs promising candidates for electrocatalysts in various energy conversion reactions.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhyuk Cho
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea,
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea,Advanced
Institute of Convergence Technology, Seoul
National University, Suwon 16229, Republic of Korea,
| |
Collapse
|
14
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
15
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
16
|
Leppin C, Langhoff A, Höfft O, Johannsmann D. A Modulation QCM Applied to Copper Electrodeposition and Stripping. ELECTROANAL 2021. [DOI: 10.1002/elan.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Leppin
- Institute of Physical Chemistry Clausthal University of Technology Arnold-Sommerfeld-Str. 4 38678 Clausthal-Zellerfeld Germany
| | - Arne Langhoff
- Institute of Physical Chemistry Clausthal University of Technology Arnold-Sommerfeld-Str. 4 38678 Clausthal-Zellerfeld Germany
| | - Oliver Höfft
- Institute of Electrochemistry Clausthal University of Technology Arnold-Sommerfeld-Str. 6 38678 Clausthal-Zellerfeld Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry Clausthal University of Technology Arnold-Sommerfeld-Str. 4 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
17
|
Controlled deposition of 2D-confined Pd or Ir nano-islands on Au(1 1 1) following Cu UPD, and their HER activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Duran S, Elmaalouf M, Odziomek M, Piquemal J, Faustini M, Giraud M, Peron J, Tard C. Electrochemical Active Surface Area Determination of Iridium‐Based Mixed Oxides by Mercury Underpotential Deposition. ChemElectroChem 2021. [DOI: 10.1002/celc.202100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silvia Duran
- Laboratoire de Chimie Moléculaire (LCM), CNRS École Polytechnique Institut Polytechnique de Paris 91120 Palaiseau France
| | - Marine Elmaalouf
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Mateusz Odziomek
- Sorbonne Université, CNRS Collège de France, UMR 7574 Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Jean‐Yves Piquemal
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Marco Faustini
- Sorbonne Université, CNRS Collège de France, UMR 7574 Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Marion Giraud
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Jennifer Peron
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Cédric Tard
- Laboratoire de Chimie Moléculaire (LCM), CNRS École Polytechnique Institut Polytechnique de Paris 91120 Palaiseau France
| |
Collapse
|
19
|
Zhang B, Wang W, Liu C, Han L, Peng J, Oleinick A, Svir I, Amatore C, Tian Z, Zhan D. Surface Diffusion of Underpotential‐Deposited Lead Adatoms on Gold Nanoelectrodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Juan Peng
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Alexander Oleinick
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Zhong‐Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
20
|
Wang M, Meng AC, Fu J, Foucher AC, Serra-Maia R, Stach EA, Detsi E, Pikul JH. Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13097-13105. [PMID: 33715346 DOI: 10.1021/acsami.0c20163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of metal-air batteries and fuel cells depends on the speed and efficiency of electrochemical oxygen reduction reactions at the cathode, which can be improved by engineering the atomic arrangement of cathode catalysts. It is, however, difficult to improve upon the performance of platinum nanoparticles in alkaline electrolytes with low-loading catalysts that can be manufactured at scale. Here, the authors synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved an 8% higher operating voltage and 30% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. The authors used rotation disc electrode studies, backscattering of electrons, and underpotential deposition to show that the increased (100) facets improved the catalytic activity of citrate dealloyed nanoporous gold compared to conventional nanoporous gold. The citrate dealloyed samples also had the highest stability and least concentration of steps and kinks. The developed synthesis and characterization techniques will enable the design and synthesis of metal nanostructured catalysts with controlled facets for low-cost and mass production of metal-air battery cathodes.
Collapse
Affiliation(s)
- Min Wang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jintao Fu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rui Serra-Maia
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric Detsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James H Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Indirect electrochemical method for high accuracy quantification of protein adsorption on gold surfaces. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Devivaraprasad R, Nalajala N, Bera B, Neergat M. Electrocatalysis of Oxygen Reduction Reaction on Shape-Controlled Pt and Pd Nanoparticles-Importance of Surface Cleanliness and Reconstruction. Front Chem 2019; 7:648. [PMID: 31637231 PMCID: PMC6787902 DOI: 10.3389/fchem.2019.00648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023] Open
Abstract
Shape-controlled precious metal nanoparticles have attracted significant research interest in the recent past due to their fundamental and scientific importance. Because of their crystallographic-orientation-dependent properties, these metal nanoparticles have tremendous implications in electrocatalysis. This review aims to discuss the strategies for synthesis of shape-controlled platinum (Pt) and palladium (Pd) nanoparticles and procedures for the surfactant removal, without compromising their surface structural integrity. In particular, the electrocatalysis of oxygen reduction reaction (ORR) on shape-controlled nanoparticles (Pt and Pd) is discussed and the results are analyzed in the context of that reported with single crystal electrodes. Accepted theories on the stability of precious metal nanoparticle surfaces under electrochemical conditions are revisited. Dissolution, reconstruction, and comprehensive views on the factors that contribute to the loss of electrochemically active surface area (ESA) of nanoparticles leading to an inevitable decrease in ORR activity are presented. The contribution of adsorbed electrolyte anions, in-situ generated adsorbates and contaminants toward the ESA reduction are also discussed. Methods for the revival of activity of surfaces contaminated with adsorbed impurities without perturbing the surface structure and its implications to electrocatalysis are reviewed.
Collapse
Affiliation(s)
- Ruttala Devivaraprasad
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Naresh Nalajala
- National Chemical Laboratory, Catalysis Division, Pune, India
| | - Bapi Bera
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
23
|
Garnier E, Vidal-Iglesias FJ, Feliu JM, Solla-Gullón J. Surface Structure Characterization of Shape and Size Controlled Pd Nanoparticles by Cu UPD: A Quantitative Approach. Front Chem 2019; 7:527. [PMID: 31417893 PMCID: PMC6684747 DOI: 10.3389/fchem.2019.00527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
The search for new surface sensitive probes that characterize the surface structure of shape and size-controlled nanoparticles is an interesting topic to properly understand the correlations between electrocatalytic properties and surface structure at the nanoscale. Herein, we report the use of Cu UPD to characterize, not only qualitatively but also quantitatively, the surface structure of different Pd nanoparticles with controlled particle shape and size. Thus, Pd nanoparticles with cubic, octahedral and rhombic dodecahedral shapes, that is, with preferential {100}, {111}, and {110} surface structures, respectively, were prepared. In addition, cubic Pd nanoparticles with different particles sizes and spherical (2–3 nm) Pd nanoparticles were also synthesized. Based on the Cu UPD results on Pd single crystals, a new approach is proposed to qualitatively and quantitatively determine the percentages of {100}, {111}, and {110} surface domains present at the surface of the different shape and size controlled Pd nanoparticles. The results reported clearly show the benefits of this Cu UPD to get detailed information of the surface structure of the nanoparticles according to their particle shape and size.
Collapse
Affiliation(s)
- Emmanuel Garnier
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| | | | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| | - José Solla-Gullón
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
24
|
Abstract
The structure sensitivity of the alkaline oxygen reduction reaction (ORR) on palladium is of great interest as cost considerations drive the need to find a replacement for platinum catalysts. The kinetics of alkaline ORR were investigated on nanocrystalline palladium (Pd) films with domain sizes between 14 and 30 nm that were synthesized by electrodeposition from aqueous electrolytes. Ten Pd films were prepared under varying electrodeposition parameters leading to each having a unique texture and morphology. The sensitivity of initial alkaline ORR kinetics to the Pd surface structure was evaluated by measuring the kinetic current density and number of electrons transferred for each film. We show through scanning electron microscopy (SEM), x-ray diffraction (XRD), atomic force microscopy (AFM), and voltammetry from rotating disc electrodes (RDEs) that the fastest alkaline ORR kinetics are found on Pd surfaces with high surface roughness, which themselves are composed of fine grains. Such a study is useful for developing membrane electrode assemblies (MEAs) based on directly electrodepositing catalyst onto a conductive diffusion layer.
Collapse
|