1
|
Agrillo C, Pecunioso A. Using an Automated Operant Conditioning Procedure to Test Colour Discrimination in Two Juvenile Piranhas, Pygocentrus nattereri: A Lesson on Failures and Pitfalls and How to Avoid Them. Animals (Basel) 2024; 14:3187. [PMID: 39595240 PMCID: PMC11591000 DOI: 10.3390/ani14223187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Most studies on the cognitive abilities of fish have focused on model organisms adopted in behavioural neuroscience. To date, little attention has been devoted to characiformes fish and we record a lack of cognitive investigation on the piranha. In this study, we conducted a preliminary set of experiments to assess whether red-bellied piranhas (Pygocentrus nattereri) can solve an automated operant conditioning task, specifically, a reversal learning task. In Experiment 1, the fish were required to discriminate between red and green, while in Experiment 2, they had to discriminate between white and yellow. In either case, we found no evidence of learning capacities with our protocol after extensive training exceeding one thousand trials overall. In Experiment 3, we simplified the learning task by using achromatic stimuli (black and white discrimination) and always presenting the reinforced stimulus on the same side of the tank (a combination of response learning and place learning). Subjects did learn how to discriminate between the colours, although no subject was able to reach the criterion in the subsequent reversal learning task, suggesting that piranhas may be limited in their cognitive flexibility. However, our training procedure may have been inefficient in addressing this issue. We outline some potential limitations of the current methodology to help to establish a more effective approach for investigating operant conditioning in this species.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Padua Neuroscience Center, 35131 Padova, Italy
| | - Alessandra Pecunioso
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
| |
Collapse
|
2
|
Pecunioso A, Aleotti E, Agrillo C. Do body colour and sociability impact scototaxis response of fish? Sci Rep 2024; 14:16717. [PMID: 39030305 PMCID: PMC11271562 DOI: 10.1038/s41598-024-67473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Scototaxis test is an anxiety-like test used by behavioural neuroscientists consisting in the assessment of dark/light preference of laboratory animals. This test has been widely used in fish. Most of the species have been shown to express a preference for the dark environment. However, the majority of the investigated species has a dark body colour, thus making a clear contrast with a white/bright background. Also, while in nature fish tend to be highly social, studies in the scototaxis literature tested single fish. Yet, individual vs. group behaviour might interact with scototaxis response. In experiment 1, we assessed the individual response to test the hypothesis that the different colours of the body might modulate the dark/light preference. We found that species with a dark body colour (Hyphessobrycon megalopterus) and a largely transparent body colour (Kryptopterus bicirrhis) strongly preferred the darker environment. Instead, the preference for darkness of a species with a luminescent part of the body (Paracheirodon axelrodi) was less pronounced. Lastly, a species with a white body colour (Corydoras albini) did not prefer either a bright or a dark sector. In experiment 2, we explored the behaviour of these species when inserted in shoals of 20 individuals in the experimental apparatus. While H. megalopterus and K. bichirrhis confirmed their robust preference for darker environments, the other two species changed their preference. Taken together, these results suggest that scototaxis response is context-dependent, as it appears to be modulated by the body colour and the presence/absence of other conspecifics in the surrounding.
Collapse
Affiliation(s)
| | - Elena Aleotti
- Department of General Psychology, University of Padova, Padova, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy
- Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Ajuwon V, Cruz BF, Carriço P, Kacelnik A, Monteiro T. GoFish: A low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav Res Methods 2024; 56:318-329. [PMID: 36622558 PMCID: PMC10794453 DOI: 10.3758/s13428-022-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/10/2023]
Abstract
Fish are the most species-rich vertebrate group, displaying vast ecological, anatomical and behavioural diversity, and therefore are of major interest for the study of behaviour and its evolution. However, with respect to other vertebrates, fish are relatively underrepresented in psychological and cognitive research. A greater availability of easily accessible, flexible, open-source experimental platforms that facilitate the automation of task control and data acquisition may help to reduce this bias and improve the scalability and refinement of behavioural experiments in a range of different fish species. Here we present GoFish, a fully automated platform for behavioural experiments in aquatic species. GoFish includes real-time video tracking of subjects, presentation of stimuli in a computer screen, an automatic feeder device, and closed-loop control of task contingencies and data acquisition. The design and software components of the platform are freely available, while the hardware is open-source and relatively inexpensive. The control software, Bonsai, is designed to facilitate rapid development of task workflows and is supported by a growing community of users. As an illustration and test of its use, we present the results of two experiments on discrimination learning, reversal, and choice in goldfish (Carassius auratus). GoFish facilitates the automation of high-throughput protocols and the acquisition of rich behavioural data. Our platform has the potential to become a widely used tool that facilitates complex behavioural experiments in aquatic species.
Collapse
Affiliation(s)
- Victor Ajuwon
- Department of Biology, University of Oxford, Oxford, UK.
| | - Bruno F Cruz
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- NeuroGEARS Ltd., London, UK
| | - Paulo Carriço
- Champalimaud Research Scientific Hardware Platform, Champalimaud Foundation, Lisbon, Portugal
| | - Alex Kacelnik
- Department of Biology, University of Oxford, Oxford, UK
| | - Tiago Monteiro
- Department of Biology, University of Oxford, Oxford, UK.
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Bennett D, Nakamura J, Vinnakota C, Sokolenko E, Nithianantharajah J, van den Buuse M, Jones NC, Sundram S, Hill R. Mouse Behavior on the Trial-Unique Nonmatching-to-Location (TUNL) Touchscreen Task Reflects a Mixture of Distinct Working Memory Codes and Response Biases. J Neurosci 2023; 43:5693-5709. [PMID: 37369587 PMCID: PMC10401633 DOI: 10.1523/jneurosci.2101-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM) deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N = 163 across three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM, or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assumptions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases. These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behavior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative behavioral strategies in the TUNL task.SIGNIFICANCE STATEMENT Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behavioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.
Collapse
Affiliation(s)
- Daniel Bennett
- School of Psychological Sciences, Monash University, Melbourne, Victoria 3180, Australia
| | - Jay Nakamura
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Chitra Vinnakota
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Neurology, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Mental Health Program, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| |
Collapse
|
5
|
Santacà M, Dadda M, Miletto Petrazzini ME, Bisazza A. Stimulus characteristics, learning bias and visual discrimination in zebrafish (Danio rerio). Behav Processes 2021; 192:104499. [PMID: 34499984 DOI: 10.1016/j.beproc.2021.104499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Zebrafish is an emerging model in the study of brain function; however, knowledge about its behaviour and cognition is incomplete. Previous studies suggest this species has limited ability in visual learning tasks compared to other teleosts. In this study, we systematically examined zebrafish's ability to learn to discriminate colour, shape, size, and orientation of figures using an appetitive conditioning paradigm. Contrary to earlier reports, the zebrafish successfully completed all tasks. Not all discriminations were learned with the same speed and accuracy. Subjects discriminated the size of objects better than their shape or colour. In all three tasks, they were faster and more accurate when required to discriminate between outlined figures than between filled figures. With stimuli consisting of outlines, the learning performance of zebrafish was comparable to that observed in higher vertebrates. Zebrafish easily learned a horizontal-vertical discrimination task, but like many other vertebrates, they had great difficulty discriminating a figure from its mirror image. Performance was more accurate for subjects reinforced on one stimulus (green over red, triangle over circle, large over small). Unexpectedly, these stimulus biases occurred only when zebrafish were tested with filled figures, suggesting some causal relationship between stimulus preference, learning bias and performance.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Automated Operant Conditioning Devices for Fish. Do They Work? Animals (Basel) 2021; 11:ani11051397. [PMID: 34068933 PMCID: PMC8156027 DOI: 10.3390/ani11051397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Automated training devices are commonly used for investigating learning, memory, and other cognitive functions in warm-blood vertebrates, whereas manual training procedures are the standard in fish and other lower vertebrates, thus limiting comparison among species. Here, we directly compared the two different approaches to training in guppies (Poecilia reticulata) by administering numerical discrimination tasks of increasing difficulty. The automated device group showed a much lower performance compared to the traditionally-trained group. We modified some features of the automated device in order to improve its efficiency. Increasing the decision time or inter-trial interval was ineffective, while reducing the cognitive load and allowing subjects to reside in the test tank improved numerical performance. Yet, in no case did subjects match the performance of traditionally-trained subjects, suggesting that small teleosts may be limited in their capacity to cope with operant conditioning devices. Abstract The growing use of teleosts in comparative cognition and in neurobiological research has prompted many researchers to develop automated conditioning devices for fish. These techniques can make research less expensive and fully comparable with research on warm-blooded species, in which automated devices have been used for more than a century. Tested with a recently developed automated device, guppies (Poecilia reticulata) easily performed 80 reinforced trials per session, exceeding 80% accuracy in color or shape discrimination tasks after only 3–4 training session, though they exhibit unexpectedly poor performance in numerical discrimination tasks. As several pieces of evidence indicate, guppies possess excellent numerical abilities. In the first part of this study, we benchmarked the automated training device with a standard manual training procedure by administering the same set of tasks, which consisted of numerical discriminations of increasing difficulty. All manually-trained guppies quickly learned the easiest discriminations and a substantial percentage learned the more difficult ones, such as 4 vs. 5 items. No fish trained with the automated conditioning device reached the learning criterion for even the easiest discriminations. In the second part of the study, we introduced a series of modifications to the conditioning chamber and to the procedure in an attempt to improve its efficiency. Increasing the decision time, inter-trial interval, or visibility of the stimuli did not produce an appreciable improvement. Reducing the cognitive load of the task by training subjects first to use the device with shape and color discriminations, significantly improved their numerical performance. Allowing the subjects to reside in the test chamber, which likely reduced the amount of attentional resources subtracted to task execution, also led to an improvement, although in no case did subjects match the performance of fish trained with the standard procedure. Our results highlight limitations in the capacity of small laboratory teleosts to cope with operant conditioning automation that was not observed in laboratory mammals and birds and that currently prevent an easy and straightforward comparison with other vertebrates.
Collapse
|