1
|
Optimal Design of Passive Power Filters Using the MRFO Algorithm and a Practical Harmonic Analysis Approach including Uncertainties in Distribution Networks. ENERGIES 2022. [DOI: 10.3390/en15072566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The design of Passive Power Filters (PPFs) has been widely acknowledged as an optimization problem. This paper addresses the PPF parameters design problem using the novel Manta Ray Foraging Optimization (MRFO) algorithm. Moreover, an analytical method based on Monte Carlo Simulation (MCS) is proposed to investigate the harmonic performance of such an optimally designed PPF with variations in power networks. The MRFO algorithm has shown a superior solution-finding ability, but a relatively higher computational effort in comparison with other recently proposed algorithms. The harmonic performance of the optimal PPF solution with uncertainties was analyzed using the proposed method. The results imply that the optimally designed PPF can effectively attenuate the high-order harmonics and improved the system performance parameters over different operating conditions to continually comply with the standard limits. The proposed MCS method showed that the optimally designed PPF reduced the voltage and current distortions by roughly 54% and 30%, respectively, and improved the network hosting capacity by 10% for the worst-case scenario.
Collapse
|
2
|
Multi-Objective Bee Swarm Optimization Algorithm with Minimum Manhattan Distance for Passive Power Filter Optimization Problems. MATHEMATICS 2022. [DOI: 10.3390/math10010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Harmonic distortion in power systems is a significant problem, and it is thus necessary to mitigate critical harmonics. This study proposes an optimal method for designing passive power filters (PPFs) to suppress these harmonics. The design of a PPF involves multi-objective optimization. A multi-objective bee swarm optimization (MOBSO) with Pareto optimality is implemented, and an external archive is used to store the non-dominated solutions obtained. The minimum Manhattan distance strategy was used to select the most balanced solution in the Pareto solution set. A series of case studies are presented to demonstrate the efficiency and superiority of the proposed method. Therefore, the proposed method has a very promising future not only in filter design but also in solving other multi-objective optimization problems.
Collapse
|
3
|
Multi-Objective Artificial Bee Colony Algorithm with Minimum Manhattan Distance for Passive Power Filter Optimization Problems. MATHEMATICS 2021. [DOI: 10.3390/math9243187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Passive power filters (PPFs) are most effective in mitigating harmonic pollution from power systems; however, the design of PPFs involves several objectives, which makes them a complex multiple-objective optimization problem. This study proposes a method to achieve an optimal design of PPFs. We have developed a new multi-objective optimization method based on an artificial bee colony (ABC) algorithm with a minimum Manhattan distance. Four different types of PPFs, namely, single-tuned, second-order damped, third-order damped, and C-type damped order filters, and their characteristics were considered in this study. A series of case studies have been presented to prove the efficiency and better performance of the proposed method over previous well-known algorithms.
Collapse
|
4
|
Multi-Objective Teaching–Learning-Based Optimization with Pareto Front for Optimal Design of Passive Power Filters. ENERGIES 2021. [DOI: 10.3390/en14196408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper proposes an optimal design method to suppress critical harmonics and improve the power factor by using passive power filters (PPFs). The main objectives include (1) minimizing the total harmonic distortion of voltage and current, (2) minimizing the initial investment cost, and (3) maximizing the total fundamental reactive power compensation. A methodology based on teaching–learning-based optimization (TLBO) and Pareto optimality is proposed and used to solve this multi-objective PPF design problem. The proposed method is integrated with both external archive and fuzzy decision making. The sub-group search strategy and teacher selection strategy are used to improve the diversity of non-dominated solutions (NDSs). In addition, a selection mechanism for topology combinations for PPFs is proposed. A series of case studies are also conducted to demonstrate the performance and effectiveness of the proposed method. With the proposed selection mechanisms for the topology combinations and parameters for PPFs, the best compromise solution for a complete PPF design is achieved.
Collapse
|