1
|
Palazzolo S, Natale S, Capparucci F, Piro MG, Cuzzocrea S, Peritore AF, Crupi R, Britti D. Freshwater pollution: cardiotoxicity effect of perfluorooctane sulfonic acid and neonicotinoid imidacloprid mixture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:136-145. [PMID: 39887270 DOI: 10.1093/etojnl/vgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 02/01/2025]
Abstract
Perfluorooctanesulfonate (PFOS) is a widely used chemical that accumulates in living things and the environment, especially the aquatic, over time. It is also known as a "forever chemical". Furthermore, different anthropogenic substances are rarely found individually in the environment. Some of these substances are very toxic to aquatic species, such as imidacloprid (IMI), an insecticide belonging to the neonicotinoid family. The main objectives of this study were to investigate the effect of coexposure of these two contaminants at individual nontoxic concentration. In this study, we first analyzed different nominal concentrations of PFOS (from 0.1 to 10 μM) and IMI (from 75 to 1,000 μM) to highlight the morphological effects at 96 hr postfertilization and subsequently assessed the toxicity of mixture coexposure at both lethal and sublethal levels. Coexposure of PFOS and IMI at two individually nontoxic concentrations resulted in increased toxicity in terms of morphological alterations, accompanied by increased cell death in the pericardium. Molecular investigations confirmed the increased cardiotoxicity accompanied by cell death, showing overexpression of apoptosis-associated genes (caspase 3, bax, and bcl-2.) and a dysregulation of oxidative stress-related genes (cat, sod1, and gstp2). These results suggest that IMI could potentiate PFOS cardiotoxicity on zebrafish embryo development by alteration of antioxidative balance and induced apoptosis.
Collapse
Affiliation(s)
- Simone Palazzolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Maria Giovanna Piro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
- Link Campus University, Rome, Italy
| | | | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, "Magna Græcia University" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Di Paola D, Capparucci F, Abbate JM, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Genovese T, Impellizzeri D, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Correction: Di Paola et al. Environmental Risk Assessment of Oxaliplatin Exposure on Early Life Stages of Zebrafish ( Danio rerio). Toxics 2022, 10, 81. TOXICS 2024; 13:28. [PMID: 39841031 PMCID: PMC11752168 DOI: 10.3390/toxics13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025]
Abstract
In the original published publication [...].
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Jessica Maria Abbate
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| |
Collapse
|
3
|
Zhan T, Song W, Jing G, Yuan Y, Kang N, Zhang Q. Zebrafish live imaging: a strong weapon in anticancer drug discovery and development. Clin Transl Oncol 2024; 26:1807-1835. [PMID: 38514602 DOI: 10.1007/s12094-024-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Developing anticancer drugs is a complex and time-consuming process. The inability of current laboratory models to reflect important aspects of the tumor in vivo limits anticancer medication research. Zebrafish is a rapid, semi-automated in vivo screening platform that enables the use of non-invasive imaging methods to monitor morphology, survival, developmental status, response to drugs, locomotion, or other behaviors. Zebrafish models are widely used in drug discovery and development for anticancer drugs, especially in conjunction with live imaging techniques. Herein, we concentrated on the use of zebrafish live imaging in anticancer therapeutic research, including drug screening, efficacy assessment, toxicity assessment, and mechanism studies. Zebrafish live imaging techniques have been used in numerous studies, but this is the first time that these techniques have been comprehensively summarized and compared side by side. Finally, we discuss the hypothesis of Zebrafish Composite Model, which may provide future directions for zebrafish imaging in the field of cancer research.
Collapse
Affiliation(s)
- Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
4
|
Interdonato L, Marino Y, D'Amico R, Cordaro M, Siracusa R, Impellizzeri D, Macrì F, Fusco R, Cuzzocrea S, Di Paola R. Modulation of the Proliferative Pathway, Neuroinflammation and Pain in Endometriosis. Int J Mol Sci 2023; 24:11741. [PMID: 37511500 PMCID: PMC10380329 DOI: 10.3390/ijms241411741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion's size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| |
Collapse
|
5
|
Peritore AF, Franco GA, Molinari F, Arangia A, Interdonato L, Marino Y, Cuzzocrea S, Gugliandolo E, Britti D, Crupi R. Effect of Pesticide Vinclozolin Toxicity Exposure on Cardiac Oxidative Stress and Myocardial Damage. TOXICS 2023; 11:473. [PMID: 37368573 DOI: 10.3390/toxics11060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
(1) Background: Vinclozolin is a popular fungicide used in fruit, ornamental plants, and vegetable crops. It has recently been seen that prolonged exposure to VZN can cause human or animal health damage to various organs, but little is known to date about its cardiovascular effects. In this study, we addressed the chronic effects of VZN on the myocardium and the enzymes involved in the cardiovascular function. (2) Methods: The animals were divided into four groups: group 1 served as the control, group 2 received 1 mg/kg of VZN by gavage, group 3 received 30 mg/kg of VZN by gavage, and group 4 received 100 mg/kg of VZN by gavage, for 30 days. (3) Results: Results showed that 100 mg/kg VZN markedly increased the plasma concentration of cardiac markers (CK-MB, cTnT, ANP, BNP). Moreover, compared to the control group, VZN treatment decreased the activity of SOD, CAT, and GPx, and downregulated the mRNA expression levels of Nrf2. Furthermore, collagen deposition was amplified owing to 100 mg/kg VZN cardiotoxicity. This harmful effect was confirmed by a histological study using hematoxylin and eosin (H&E) and Masson's trichrome staining. (4) Conclusion: Overall, our results proved the cardiotoxicity caused by chronic exposure to VZN.
Collapse
Affiliation(s)
| | | | - Francesco Molinari
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessia Arangia
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Livia Interdonato
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, "Magna Græcia University" of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa, 88100 Catanzaro, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
D’Amico R, Tomasello M, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Abdelhameed AS, Fusco R, Calabrese V, Cuzzocrea S, Di Paola R. Mechanism of Action of Natural Compounds in Peripheral Multiorgan Dysfunction and Hippocampal Neuroinflammation Induced by Sepsis. Antioxidants (Basel) 2023; 12:antiox12030635. [PMID: 36978883 PMCID: PMC10045853 DOI: 10.3390/antiox12030635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis have increased rates of central nervous system (CNS) morbidities, which are linked to long-term cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury and hyperinflammation observed in the acute phase of sepsis and on the development of long-term neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage. Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses were performed, and serum and brain (hippocampus) samples were harvested at four weeks from surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation. In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione (GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation, nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1), phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3) expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor administration on the long-term development of neuroinflammation and brain dysfunction induced by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to counteract the degenerative process triggered by sepsis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 14451, Saudi Arabia
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Vererinary Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
8
|
Hong T, Park H, An G, Song G, Lim W. Ethalfluralin induces developmental toxicity in zebrafish via oxidative stress and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158780. [PMID: 36115403 DOI: 10.1016/j.scitotenv.2022.158780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, of dinitroaniline herbicide family, is an effective weed controller. Following residue detection in herbicide-treated fields, ethalfluralin was reported to interfere with early stages of implantation in some vertebrate species. However, the role of ethalfluralin in the development of zebrafish embryos has not been elucidated yet. Therefore, in the present study, we investigated the morphological and physiological changes that occur in the embryonic development of zebrafish due to ethalfluralin exposure. Results indicated that ethalfluralin decreased survival rate along with reduction in the hatching ratio and heartbeat. It was observed to cause edema in the heart and yolk sac, and apoptosis in the anterior region of the developing zebrafish larvae; as visualized through acridine orange and TUNEL staining. In addition, ethalfluralin increased the expression of the apoptosis-associated genes including tp53, cyc1, casp8, casp9, and casp3. The Seahorse Mito Stress analysis revealed that ethalfluralin slightly reduced mitochondrial respiration in live zebrafish embryos. Reactive oxygen species (ROS) production was also observed to be elevated in zebrafish larvae in response to ethalfluralin. Treatment with ethalfluralin decreased blood vessel formation in brain and intestine in flk1 transgenic zebrafish embryos. The decrease in angiogenesis related gene expression was specifically observed in vegfc, flt1, and kdrl, and in the intestinal vasculature related genes apoa4a, aqp3, fabp2, and vil1. Moreover, an increase in inflammatory genes such as cox2a, cox2b, cxcl-c1c, il8, mcl1a, mcl1b, and nf-κb was observed using real-time PCR analysis. Collectively, these results indicate that oxidative stress generated by exposure to ethalfluralin induced ROS generation, apoptosis, inflammation and anti-angiogenic effects, and therefore, ethalfluralin may be toxic to the development of zebrafish embryos.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Marino Y, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Complex Interplay between Autophagy and Oxidative Stress in the Development of Endometriosis. Antioxidants (Basel) 2022; 11:antiox11122484. [PMID: 36552692 PMCID: PMC9774576 DOI: 10.3390/antiox11122484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion during the experiment. Seven days from the induction, once the lesions were implanted, an Açai Berry was administered daily by gavage for the next seven days. At the end of the experiment, the hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical and histological analysis confirmed this result. From the molecular point of view, Western blot analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression. Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
10
|
Di Paola D, Gugliandolo E, Capparucci F, Cordaro M, Iaria C, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Di Paola R, Crupi R, Peritore AF. Early Exposure to Environmental Pollutants: Imidacloprid Potentiates Cadmium Toxicity on Zebrafish Retinal Cells Death. Animals (Basel) 2022; 12:ani12243484. [PMID: 36552404 PMCID: PMC9774592 DOI: 10.3390/ani12243484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, we analyzed the combination of non-toxic concentrations per se, of Cd and a pesticide the imidacloprid (IMI) (10 and 50 μM for Cd and 195 μM for IMI), to highlight early developmental toxicity and possible damage to retinal cells. Co-exposure to Cd and IMI showed a toxic effect in zebrafish larval development, with lowered degrees of survival and hatching, and in some cases the induction of structural alterations and edema. In addition, co-exposure to 50 and 195 μM, respectively, for Cd and IMI, also showed increased apoptosis in eye cells, accompanied by up regulation of genes associated with antioxidant markers (cat, sod1, nrf2 and ho-1). Thus, the present study aims to highlight how the presence of multiple contaminants, even at low concentrations, can be a risk factor in a model of zebrafish (Danio rerio). The presence of other contaminants, such as IMI, can cause an enhancement of the toxic action of Cd on morphological changes in the early life stage of zebrafish, but more importantly disrupt the normal development of the retina, eventually triggering apoptosis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| |
Collapse
|
11
|
Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Açai Berry Attenuates Cyclophosphamide-Induced Damage in Genitourinary Axis-Modulating Nrf-2/HO-1 Pathways. Antioxidants (Basel) 2022; 11:antiox11122355. [PMID: 36552563 PMCID: PMC9774754 DOI: 10.3390/antiox11122355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclophosphamide (CYP) is used to treat different malignancies and autoimmune disorders in men. This chemotherapy frequently reduces tumors, which is beneficial, but also causes infertility because of severe oxidative stress, inflammation, and apoptosis in the bladder and testes brought on by its metabolite, acrolein. The goal of this study was to assess the efficacy of a novel food, açai berry, in preventing CYP-induced damage in the bladder and testes. METHODS CYP was administered intraperitoneally once during the experiment at a dose of 200 mg/kg body weight diluted in 10 mL/kg b.w. of water. Açai berry was administered orally at a dose of 500 mg/kg. RESULTS The administration of açai berry was able to reduce inflammation, oxidative stress, lipid peroxidation, apoptosis, and histological changes in the bladder and testes after CYP injection. CONCLUSIONS Our findings show for the first time that açai berry modulates physiological antioxidant defenses to protect the bladder and testes against CYP-induced changes.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
12
|
Dong ZB, Wang YJ, Cheng ML, Wang BJ, Lu H, Zhu HL, Liu L, Xie M. 2-Bromopalmitate decreases spinal inflammation and attenuates oxaliplatin-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction. PLoS One 2022; 17:e0275428. [PMID: 36315519 PMCID: PMC9621438 DOI: 10.1371/journal.pone.0275428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
Oxaliplatin (OXA) is a third-generation platinum compound with clinical activity in multiple solid tumors. Due to the repetition of chemotherapy cycle, OXA-induced chronic neuropathy presenting as paresthesia and pain. This study explored the neuropathy of chemotherapy pain and investigated the analgesic effect of 2-bromopalmitate (2-BP) on the pain behavior of OXA-induced rats. The chemotherapy pain rat model was established by the five consecutive administration of OXA (intraperitoneal, 4 mg/kg). After the establishment of OXA-induced rats, the pain behavior test, inflammatory signal analysis and mitochondrial function measurement were conducted. OXA-induced rats exhibited mechanical allodynia and spinal inflammatory infiltration. Our fluorescence and western blot analysis revealed spinal astrocytes were activated in OXA rats with up-regulation of astrocytic markers. In addition, NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome mediated inflammatory signal cascade was also activated. Inflammation was triggered by dysfunctional mitochondria which represented by increase in cyclooxygenase-2 (COX-2) level and manganese superoxide dismutase (Mn-SOD) activity. Intrathecally injection of 2-BP significantly attenuated dynamin-related protein 1 (Drp1) mediated mitochondrial fission, recovered mitochondrial function, suppressed NLRP3 inflammasome cascade, and consequently decreased mechanical pain sensitivity. For cell research, 2-BP treatment significantly reversed tumor necrosis factor-α (TNF-α) induced mitochondria membrane potential deficiency and high reactive oxygen species (ROS) level. These findings indicate 2-BP decreases spinal inflammation and relieves OXA-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhi-Bin Dong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yu-Jia Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Meng-Lin Cheng
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Bo-Jun Wang
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Hong Lu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ling Liu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
- * E-mail: (LL); (MX)
| | - Min Xie
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
- * E-mail: (LL); (MX)
| |
Collapse
|
13
|
Modulation of NRF-2 Pathway Contributes to the Therapeutic Effects of Boswellia serrata Gum Resin Extract in a Model of Experimental Autoimmune Myocarditis. Antioxidants (Basel) 2022; 11:antiox11112129. [PMID: 36358503 PMCID: PMC9686591 DOI: 10.3390/antiox11112129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
Myocarditis is a clinically dangerous disease that can result in death. Oxidative stress as well as inflammatory and immune responses play important roles in the development of myocarditis. Presently, more research has been carried out on anti-inflammatory treatment using natural compounds. The aim was to evaluate the anti-inflammatory and antioxidant effect of Boswellia gum resin extract in an experimental autoimmune myocarditis (EAM) and the involvement of molecular pathways. Rats were immunized with porcine cardiac myosin to ascertain EAM. The EAM rats were treated orally with Boswellia extract or vehicle for 21 days. EAM caused macroscopic and microscopic alterations with necrosis, inflammatory cell infiltration, fibrosis of the heart tissues, as well as clinical biochemical changes, cytokines release, altered immune response, and oxidative stress. Oral treatment with Boswellia markedly reduced myocardial damage, decreased inflammatory infiltrate, fibrosis, biochemical markers, such as lactate dehydrogenase and the creatine kinase, and heart weight/body weight ratio. In addition, low nitric oxide and malondialdehyde levels together with the upregulation of antioxidant nuclear factor erythroid 2–related factor 2 NRF-2 pathway were observed in EAM rats treated with Boswellia. Thus, Boswellia could be considered as a new natural extract to combat heart pathologies, such as autoimmune myocarditis.
Collapse
|
14
|
Cordaro M, Modafferi S, D’Amico R, Fusco R, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Di Paola D, Impellizzeri D, Cuzzocrea S, Calabrese V, Di Paola R, Siracusa R. Natural Compounds Such as Hericium erinaceus and Coriolus versicolor Modulate Neuroinflammation, Oxidative Stress and Lipoxin A4 Expression in Rotenone-Induced Parkinson's Disease in Mice. Biomedicines 2022; 10:biomedicines10102505. [PMID: 36289766 PMCID: PMC9599271 DOI: 10.3390/biomedicines10102505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A growing body of research suggests that oxidative stress and neuroinflammation are early pathogenic features of neurodegenerative disorders. In recent years, the vitagene system has emerged as a potential target, as it has been shown to have a high neuroprotective power. Therefore, the discovery of molecules capable of activating this system may represent a new therapeutic target to limit the deleterious consequences induced by oxidative stress and neuroinflammation, such as neurodegeneration. Lipoxins are derived from arachidonic acid, and their role in the resolution of systemic inflammation is well established; however, they have become increasingly involved in the regulation of neuroinflammatory and neurodegenerative processes. Our study aimed at activating the NF-E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) redox system and increasing lipoxin A4 for the modulation of antioxidant stress and neuroinflammation through the action of two fungi in a rotenone-induced Parkinson's model. METHODS During the experiment, mice received Hericium erinaceus, Coriolus versicolor or a combination of the two (200 mg/kg, orally) concomitantly with rotenone (5 mg/kg, orally) for 28 days. RESULTS The results obtained highlighted the ability of these two fungi and, in particular, their ability through their association to act on neuroinflammation through the nuclear factor-kB pathway and on oxidative stress through the Nrf2 pathway. This prevented dopaminergic neurons from undergoing apoptosis and prevented the alteration of typical Parkinson's disease (PD) markers and α-synuclein accumulation. The action of Hericium erinaceus and Coriolus versicolor was also able to limit the motor and non-motor alterations characteristic of PD. CONCLUSIONS Since these two mushrooms are subject to fewer regulations than traditional drugs, they could represent a promising nutraceutical choice for preventing PD.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
15
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
16
|
Chronic Exposure to Vinclozolin Induced Fibrosis, Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Mice Kidney. Int J Mol Sci 2022; 23:ijms231911296. [PMID: 36232596 PMCID: PMC9570110 DOI: 10.3390/ijms231911296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Vinclozolin is one of the most used fungicides in the control of fungi in fruits, vegetables, and ornamental plants. The effects of its exposure on different organs have been described, but information regarding its relevance to vinclozolin-induced nephrotoxicity is largely missing. This study focuses on the potential mechanism of vinclozolin-induced nephrotoxicity. CD1 male mice were administered vinclozolin (100 mg/kg) by oral gavage for 28 days. Vinclozolin administration decreased body weight over the treatment period and at the end of the experiment, increased the ratio of kidney weight to body weight and increased serum urea nitrogen and creatinine contents. Vinclozolin also induced histopathological alterations, including tubular dilatation and necrosis and impaired the integrity of the renal-tubular architecture and kidney fibrosis. The analyses conducted showed that vinclozolin administration altered the mRNA levels of mitochondrial function-related proteins (SIRT3, SIRT1, PGC-1α, TFAM, NRF1, VDAC-1, and Cyt c) and oxidative stress (increased lipid peroxidation and decreased total antioxidative capacity, catalase, and superoxide dismutase activities, glutathione levels, and glutathione peroxidase activity) in the kidneys. Furthermore, vinclozolin induced toxicity that altered Nrf2 signalling and the related proteins (HO-1 and NQO-1). Vinclozolin administration also affected both the extrinsic and intrinsic apoptotic pathways, upregulating the expression of proapoptotic factors (Bax, Caspase 3, and FasL) and downregulating antiapoptotic factor (Bcl-2) levels. This study suggests that vinclozolin induced nephrotoxicity by disrupting the transcription of mitochondrial function-related factors, the Nrf2 signalling pathway, and the extrinsic and intrinsic apoptotic pathways.
Collapse
|
17
|
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin. Animals (Basel) 2022; 12:ani12182483. [PMID: 36139342 PMCID: PMC9495157 DOI: 10.3390/ani12182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. Abstract To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.
Collapse
|
18
|
Interdonato L, D’amico R, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Coaccioli S, Genovese T, Impellizzeri D, Di Paola R, Cuzzocrea S. Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. Biomolecules 2022; 12:biom12091308. [PMID: 36139146 PMCID: PMC9496587 DOI: 10.3390/biom12091308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Stefano Coaccioli
- General Medical Clinic and Medical Therapy, Rheumatology and Medical Therapy of the Pain, University of Perugia, “Polo di Terni”, “AO Santa Maria” of Terni, 06129 Perugia, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
19
|
Masi M, Maddalon A, Iulini M, Linciano P, Galbiati V, Marinovich M, Racchi M, Corsini E, Buoso E. Effects of endocrine disrupting chemicals on the expression of RACK1 and LPS-induced THP-1 cell activation. Toxicology 2022; 480:153321. [PMID: 36113621 DOI: 10.1016/j.tox.2022.153321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
The existence of a complex hormonal balance among glucocorticoids, androgens and estrogens involved in the regulation of Receptor for Activated C Kinase 1 (RACK1) expression and its related immune cells activation, highlights the possibility to employ this protein as screening tool for the evaluation of the immunotoxic profile of endocrine disrupting chemicals (EDCs), hormone-active substances capable of interfering with the physiologic hormonal signaling. Hence, the aim of this work was to investigate the effect of the exposure of EDCS 17α-ethynylestradiol (EE), diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) on RACK1 expression and on lipopolysaccharide (LPS)-induced activation of the human monocytic cell line THP-1, a validated model for this investigation. In line with our previous results with estrogen-active compounds, EE treatment significantly induced RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which paralleled an increase in LPS-induced IL-8, TNF-α production and CD86 expression, previously demonstrated to be dependent on RACK1/PKCβ activation. EE mediates its effect on RACK1 expression through G-protein-coupled estrogen receptor (GPER) and androgen receptor (AR) ligand-independent cascade, as also suggested by in silico molecular docking simulation. Conversely, DEP and PFOS induced a dose-dependent downregulation of RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which was mirrored by a reduction of IL-8, TNF-α production and CD86 expression. Mifepristone pre-treatments abolish DEP and PFOS effects, confirming their GR agonist profile, also corroborated by molecular docking. Altogether, our data confirm that RACK1 represents an interesting target of steroid active compounds, which expression offers the opportunity to screen the immunotoxic potential of different hormone-active substances of concerns due to their human exposure and environmental persistence.
Collapse
Affiliation(s)
- Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
20
|
Impellizzeri D, D’Amico R, Fusco R, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Di Paola D, Di Paola R, Cuzzocrea S, Siracusa R, Cordaro M. Açai Berry Mitigates Vascular Dementia-Induced Neuropathological Alterations Modulating Nrf-2/Beclin1 Pathways. Cells 2022; 11:cells11162616. [PMID: 36010690 PMCID: PMC9406985 DOI: 10.3390/cells11162616] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine a novel method for reversing VaD-induced changes brought on by açai berry supplementation in a VaD mouse model. The purpose of this study was to examine the impact of açai berries on the molecular mechanisms underlying VaD in a mouse model of the disease that was created by repeated ischemia-reperfusion (IR) of the whole bilateral carotid artery. Here, we found that açai berry was able to reduce VaD-induced behavioral alteration, as well as hippocampal death, in CA1 and CA3 regions. These effects are probably due to the modulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and Beclin-1, suggesting a possible crosstalk between these molecular pathways. In conclusion, the protective effects of açai berry could be a good supplementation in the future for the management of vascular dementia.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
- Correspondence: (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (R.D.P.); (S.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
21
|
Di Paola D, Iaria C, Capparucci F, Arangia A, Crupi R, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Impact of Mycotoxin Contaminations on Aquatic Organisms: Toxic Effect of Aflatoxin B1 and Fumonisin B1 Mixture. Toxins (Basel) 2022; 14:toxins14080518. [PMID: 36006180 PMCID: PMC9414388 DOI: 10.3390/toxins14080518] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Multiple contaminations of several mycotoxins have been detected in human and veterinary food and feed worldwide. To date, a number of studies on the combined effects of mycotoxins have been conducted on cell and animal models, but very limited studies have been done on aquatic organisms. (2) The purpose of the present study was to evaluate the combined toxic effects of Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1) on zebrafish (Danio rerio) embryos. (3) Results: Our results showed that the combination of AFB1 and FB1 at nontoxic concentrations exerted a negative effect on the lethal endpoints analyzed, such as survival, hatching, and heart rate. In addition, the mixture of mycotoxins caused an increase in the levels of enzymes and proteins involved in the antioxidant process, such as superoxide dismutase (SOD) and catalase (CAT), both in terms of protein levels and gene expression, as well as an increase in the levels of the detoxification enzymes glutathione s-transferases (GST) and cytochromes P450 (CYP450). Furthermore, we showed that the mycotoxin mixture induced an increase in pro-apoptotic proteins such as bax and caspase 3, and at the same time reduced the gene expression of the anti-apoptotic bcl-2 protein. Finally, a significant decrease in thyroid function was observed in terms of triiodothyronine (T3), thyroxine (T4), and vitellogenin (VTG) levels. (4) Conclusion: We can say that the mixture of mycotoxins carries a greater risk factor than individual presences. There is a greater need for effective detoxification methods to control and reduce the toxicity of multiple mycotoxins and reduce the toxicity of multiple mycotoxins in feed and throughout the food chain.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| |
Collapse
|
22
|
Di Paola D, Abbate JM, Iaria C, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. RETRACTED: Environmental Risk Assessment of Dexamethasone Sodium Phosphate and Tocilizumab Mixture in Zebrafish Early Life Stage ( Danio rerio). TOXICS 2022; 10:279. [PMID: 35736888 PMCID: PMC9231124 DOI: 10.3390/toxics10060279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Pharmaceuticals are widely regarded as a menace to the aquatic environment. The constant consumption of biologically active chemicals for human health has been matched by an increase in the leaking of these compounds in natural habitats over the last two decades. This study was aimed to evaluate the molecular pathway underling the developmental toxicity of exposure in the ecological environment. Zebrafish embryos were exposed at doses of dexamethasone sodium phosphate (DEX) 1 μmol/L, tocilizumab 442.1 μmol/L and dexamethasone + tocilizumab (1 μmol/L and 442.1 μmol/L, respectively) from 24 h post-fertilization (hpf) to 96 hpf. This study confirmed that DEX exposure in association with tocilizumab 442.1 μmol/L at 1 μmol/L (non-toxic concentration) affected the survival and hatching rate, morphology score, and body length. Additionally, it significantly disturbed the antioxidant defense system in zebrafish larvae. Furthermore, a DEX 1 μmol/L and tocilizumab 442.1 μmol/L association also increased the production of apoptosis-related proteins (caspase-3, bax, and bcl-2).
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Jessica Maria Abbate
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| |
Collapse
|
23
|
Di Paola D, Capparucci F, Lanteri G, Crupi R, Marino Y, Franco GA, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Toxicity Assessment of Sodium Fluoride and Platinum-Derived Drugs Co-Exposure on Aquatic Organisms. TOXICS 2022; 10:toxics10050272. [PMID: 35622686 PMCID: PMC9145728 DOI: 10.3390/toxics10050272] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
Pharmaceuticals are widely acknowledged to be a threat to aquatic life. Over the last two decades, the steady use of biologically active chemicals for human health has been mirrored by a rise in the leaking of these chemicals into natural environments. The aim of this work was to detect the toxicity of sodium fluoride (NaF) exposure and platinum-derived drugs in an ecological setting on aquatic organism development. From 24 to 96 h post-fertilization, zebrafish embryos were treated to dosages of NaF 10 mg/L−1 + cisplatin (CDDP) 100 μM, one with NaF 10 mg/L−1 + carboplatin (CARP) 25 μM, one with NaF 10 mg/L−1 + CDDP 100 μM + CARP 25 μM. Fluoride exposure in combination with Cisplatin and Carboplatin (non-toxic concentration) had an effect on survival and hatching rate according to this study. Additionally, it significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. NaF 10 mg/L−1 associated with CDDP 100 μM and CARP 25 μM, increased the production of apoptosis-related proteins (caspase 3, bax, and bcl-2) and the downregulation of acetylcholinesterase (AChE) activity, while no effect was seen for the single exposure.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| |
Collapse
|
24
|
Paola DD, Capparucci F, Natale S, Crupi R, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. RETRACTED: Combined Effects of Potassium Perchlorate and a Neonicotinoid on Zebrafish Larvae ( Danio rerio). TOXICS 2022; 10:203. [PMID: 35622618 PMCID: PMC9145203 DOI: 10.3390/toxics10050203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Imidacloprid (IMI) is part of the neonicotinoids family, insecticides widely used by humans and also found in wastewater. This class of compounds, if present in the environment, can cause toxicity to different species such as bees and gammarids, although little is known about vertebrates such as fish. In addition, several substances have been reported in the environment that can cause damage to aquatic species, such as potassium perchlorate (KClO4), if exposed to high concentrations or for long periods. Often, the co-presence of different contaminants can cause a synergistic action in terms of toxicity to fish. In the present study, we first analyzed different concentrations of IMI (75, 100 and 150 mg/L) and KClO4 (1, 1.5 and 5 mM) to highlight the morphological effects at 96 hpf and, subsequently, chose two nontoxic concentrations to evaluate their co-exposure and the pathway involved in their co-toxicity. Morphological alteration, mucus production, messenger RNA (mRNA) expression related to intestinal function and oxidative stress were measured. These results suggest that co-exposure to IMI and KClO4 could affect zebrafish embryo development by increasing gut toxicity and the alteration of antioxidative defense mechanisms.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| |
Collapse
|