1
|
Huang XZ, Huang H, Chen H, Wei YK. Identification of endocrine-disrupting chemicals targeting key OP-associated genes via bioinformatics and machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117155. [PMID: 39383820 DOI: 10.1016/j.ecoenv.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Osteoporosis (OP), a metabolic disorder predominantly impacting postmenopausal women, has seen considerable progress in diagnosis and treatment over the past few decades. However, the intricate interplay between genetic factors and endocrine disruptors (EDCs) in the pathogenesis of OP remains inadequately elucidated. The objective of this research is to examine the environmental pollutants and their regulatory mechanisms that could potentially influence the pathogenesis of OP, in order to establish a theoretical foundation for the targeted prevention and medical management of individuals with OP. Utilizing CTD and GEO datasets, network toxicology and bioinformatics analyses were conducted to identify target genes from a pool of 98 co-associated genes. Subsequently, a novel prediction model was developed employing a multiple machine learning algorithm. The efficacy of the model was validated based on the area under the receiver operating characteristic curve. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was used to confirm the expression levels of key genes in clinical samples. We have identified significant genes (FOXO3 and LUM) associated with OP and conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, immune infiltration analysis, and molecular docking analysis. Through the analysis of these key genes, we have identified 13 EDCs that have the potential to impact OP. Several endocrine disruptors, such as Dexamethasone, Perfluorononanoic acid, genistein, cadmium, and bisphenol A, have been identified as notable environmental pollutants that impact the OP. Molecular docking analysis revealed significant binding affinity of major EDCs to the post-translational protein structures of key genes. This study demonstrates that EDCs, including dexamethasone, perfluorononanoic acid, genistein, cadmium, and bisphenol A, can be identified as important environmental pollutants affecting OP, and that FOXO3 and LUM have the potential to be diagnostic markers for OP. These results elucidate a novel association between EDCs regulated by key genes and the onset of OP.
Collapse
Affiliation(s)
- Xin-Zhou Huang
- Department of Orthopedics, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, China
| | - He Huang
- Department of Orthopedics, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, China
| | - Hui Chen
- Department of Laboratory, The First People's Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| | - Yong-Kun Wei
- Department of Orthopedics, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, China.
| |
Collapse
|
2
|
Zhihang H, Ezemaduka AN, Hongxia C, Yan P, Yiwen G, Nan Z, Xinrui L, Shan G, Guojun L, Jing Y, Bo X. The joint toxicity effect of glyphosate and cadmium in a concentration-dependent manner on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117081. [PMID: 39341135 DOI: 10.1016/j.ecoenv.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The co-occurrence of glyphosate (GPS), a commonly used organophosphorus herbicide, and cadmium (Cd), a neurotoxic metal, in agricultural environments prompts concerns about their combined toxic effects on ecosystems. This study explores the combined effects of GPS and Cd on the model organism Caenorhabditis elegans (C. elegans), to understand their cumulative effects in organismal living environments. We investigated the interaction between GPS and Cd over 24 hours using a comprehensive approach that included a variety of toxicity endpoints as well as the novel Automated Recognition and Statistics Tool (NCLE) for body bend measurement. Our data show a concentration-dependent interplay in which antagonistic effects at lower concentrations reduce phenotypic damage while synergistic effects emerge at higher concentrations, particularly at GPS's LC50. Transcriptome analysis under antagonistic conditions revealed significant downregulation of Cd toxicity-related genes and identified Y22D7AL.16, which has a C2H2-type zinc finger domain, as a novel gene involved in metal stress response, implying an alternative Cd-resilience mechanism. The expression profile of this gene shows that it plays a larger role in both development and metal stress adaption. These findings highlight the complexities of compound pollutant interactions, emphasizing the importance of including such dynamics in environmental risk assessments and control techniques.
Collapse
Affiliation(s)
- Huang Zhihang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Anastasia Ngozi Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Cai Hongxia
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Pan Yan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gong Yiwen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhang Nan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Lu Xinrui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Gao Shan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Li Guojun
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Yang Jing
- Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xian Bo
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
3
|
Huang X, Ye Q, Dai W, Zheng J, Li Y, Wang C, Luo Z, Yang J, Zhuo W, Wan QL. Cadmium exposure induces multigenerational inheritance of germ cell apoptosis and fertility suppression in Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 191:108952. [PMID: 39159515 DOI: 10.1016/j.envint.2024.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Cadmium is a significant environmental pollutant that poses a substantial health hazard to humans due to its propensity to accumulate in the body and resist excretion. We have a comprehensive understanding of the damage caused by Cd exposure and the mechanisms of tolerance, however, the intricate mechanisms underlying multigenerational effects resulting from Cd exposure remain poorly understood. In this study, Caenorhabditis elegans were used as a model organism to investigate Cd-induced multigenerational effects and its association with epigenetic modifications. The results showed that Cd exposure leads to an increase in germ cell apoptosis and a decrease in fertility, which can be passed down to subsequent generations. Further analysis revealed that transcription factors DAF-16/FOXO and SKN-1/Nrf2 play essential roles in responding to Cd exposure and in the transgenerational induction of germ cell apoptosis. Additionally, histone H3K4 trimethylation (H3K4me3) marks stress-responsive genes and enhances their transcription, ultimately triggering multigenerational germ cell apoptosis. This study provides compelling evidence that the detrimental effects of Cd on the reproductive system can be inherited across generations. These findings enhance our understanding of the multigenerational effects of environmental pollutants and may inform strategies for the prevention and control of such pollutants.
Collapse
Affiliation(s)
- Xiaobing Huang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qunshan Ye
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wenyu Dai
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China; Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Cheng Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhenhuan Luo
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jing Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China; Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wenyan Zhuo
- Department of Neurology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
4
|
Huang B, Nie G, Dai X, Cui T, Pu W, Zhang C. Environmentally relevant levels of Cd and Mo coexposure induces ferroptosis and excess ferritinophagy through AMPK/mTOR axis in duck myocardium. ENVIRONMENTAL TOXICOLOGY 2024; 39:4196-4206. [PMID: 38717027 DOI: 10.1002/tox.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) are multiorgan toxic, but the detrimental impacts of Cd and/or Mo on poultry have not been fully clarified. Thence, a 16-week sub-chronic toxic experiment was executed with ducks to assess the toxicity of Cd and/or Mo. Our data substantiated that Cd and Mo coexposure evidently reduced GSH-Px, GSH, T-SOD, and CAT activities and elevated H2O2 and MDA concentrations in myocardium. What is more, the study suggested that Cd and Mo united exposure synergistically elevated Fe2+ content in myocardium and activated AMPK/mTOR axis, then induced ferroptosis by obviously upregulating ACSL4, PTGS2, and TFRC expression levels and downregulating SLC7A11, GPX4, FPN1, FTL1, and FTH1 expression levels. Additionally, Cd and Mo coexposure further caused excessive ferritinophagy by observably increasing autophagosomes, the colocalization of endogenous FTH1 and LC3, ATG5, ATG7, LC3II/LC3I, NCOA4, and FTH1 expression levels. In brief, this study for the first time substantiated that Cd and Mo united exposure synergistically induced ferroptosis and excess ferritinophagy by AMPK/mTOR axis, finally augmenting myocardium injure in ducks, which will offer an additional view on united toxicity between two heavy metals on poultry.
Collapse
Affiliation(s)
- Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Ministry of Public Education, Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Essig YJ, Leszczyszyn OI, Almutairi N, Harrison-Smith A, Blease A, Zeitoun-Ghandour S, Webb SM, Blindauer CA, Stürzenbaum SR. Juggling cadmium detoxification and zinc homeostasis: A division of labour between the two C. elegans metallothioneins. CHEMOSPHERE 2024; 350:141021. [PMID: 38151062 PMCID: PMC11134313 DOI: 10.1016/j.chemosphere.2023.141021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The chemical properties of toxic cadmium and essential zinc are very similar, and organisms require intricate mechanisms that drive selective handling of metals. Previously regarded as unspecific "metal sponges", metallothioneins (MTLs) are emerging as metal selectivity filters. By utilizing C. elegans mtl-1 and mtl-2 knockout strains, metal accumulation in single worms, single copy fluorescent-tagged transgenes, isoform specific qPCR and lifespan studies it was possible to demonstrate that the handling of cadmium and zinc by the two C. elegans metallothioneins differs fundamentally: the MTL-2 protein can handle both zinc and cadmium, but when it becomes unavailable, either via a knockout or by elevated cadmium exposure, MTL-1 takes over zinc handling, leaving MTL-2 to sequester cadmium. This division of labour is reflected in the folding behaviour of the proteins: MTL-1 folded well in presence of zinc but not cadmium, the reverse was the case for MTL-2. These differences are in part mediated by a zinc-specific mononuclear His3Cys site in the C-terminal insertion of MTL-1; its removal affected the entire C-terminal domain and may shift its metal selectivity towards zinc. Overall, we uncover how metallothionein isoform-specific responses and protein properties allow C. elegans to differentiate between toxic cadmium and essential zinc.
Collapse
Affiliation(s)
- Yona J Essig
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Oksana I Leszczyszyn
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Norah Almutairi
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Alix Blease
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Sam M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Stephen R Stürzenbaum
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK.
| |
Collapse
|
6
|
Liu Z, Hua X, Zhao Y, Bian Q, Wang D. Polyethylene nanoplastics cause reproductive toxicity associated with activation of both estrogenic hormone receptor NHR-14 and DNA damage checkpoints in C. elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167471. [PMID: 37778542 DOI: 10.1016/j.scitotenv.2023.167471] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
As the most commercial polymer, the polyethylene nanoparticle (PE-NP) has been discharged into the environment and poses potential risks to organisms. However, the possible reproductive toxicity of PE-NP and underlying mechanisms remain largely unknown. In this study, Caenorhabditis elegans was employed as the animal model to effects of PE-NP (100 nm) and their leachates on reproduction and underlying mechanisms. Nematodes were exposed to PE-NP at 0.1-100 μg/L from L1-larvae to adult day 1 (approximately 4.5 days). Both brood size and number of fertilized eggs in uterus were decreased by 10 and 100 μg/L PE-NP, but could not be affected by their leachates. In addition, number of mitotic cells, length, and area of gonad were reduced by 10 and 100 μg/L PE-NP, but were not altered by their leachates. Accompanied with alteration in expressions of genes (egl-1, ced-9, ced-4, and ced-3) governing cell apoptosis, germline apoptosis was enhanced by PE-NP. Meanwhile, DNA damage was involved in the enhancement germline apoptosis after PE-NP exposure. PE-NP further increased expression of nhr-14 encoding estrogenic hormone receptor, and RNAi of nhr-14 suppressed PE-NP reproductive toxicity. Moreover, RNAi of nhr-14 decreased expression of egl-1, ced-4, ced-3, and mrt-2 in PE-NP exposed nematodes. Therefore, exposure to PE-NPs rather than in their leachates potentially caused reproductive toxicity by activating both estrogenic hormone receptor NHR-14 and DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) in nematodes. These findings provide important insights into the exposure risk of PE-NPs on reproduction of environmental organisms.
Collapse
Affiliation(s)
- Zhengying Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yue Zhao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
7
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|
8
|
Xiao L, Cheng H, Cai H, Wei Y, Zan G, Feng X, Liu C, Li L, Huang L, Wang F, Chen X, Zou Y, Yang X. Associations of Heavy Metals with Activities of Daily Living Disability: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87009. [PMID: 36036794 PMCID: PMC9423034 DOI: 10.1289/ehp10602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to heavy metals has been reported to be associated with multiple diseases. However, direct associations and potential mechanisms of heavy metals with physical disability remain unclear. OBJECTIVES We aimed to quantify associations of heavy metals with physical disability and further explore the potential mechanisms of DNA methylation on the genome scale. METHODS A cross-sectional study of 4,391 older adults was conducted and activities of daily living (ADL) disability were identified using a 14-item scale questionnaire including basic and instrumental activities to assess the presence of disability (yes or no) rated on a scale of dependence. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated to quantify associations between heavy metals and ADL disability prevalence using multivariate logistic regression and Bayesian kernel machine regression (BKMR) models. Whole blood-derived DNA methylation was measured using the HumanMethylationEPIC BeadChip array. An ADL disability-related epigenome-wide DNA methylation association study (EWAS) was performed among 212 sex-matched ADL disability cases and controls, and mediation analysis was further applied to explore potential mediators of DNA methylation. RESULTS Each 1-standard deviation (SD) higher difference in log10-transformed manganese, copper, arsenic, and cadmium level was significantly associated with a 14% (95% CI: 1.05, 1.24), 16% (95% CI:1.07, 1.26), 22% (95% CI:1.13, 1.33), and 15% (95% CI:1.06, 1.26) higher odds of ADL disability, which remained significant in the multiple-metal and BKMR models. A total of 85 differential DNA methylation sites were identified to be associated with ADL disability prevalence, among which methylation level at cg220000984 and cg23012519 (annotated to IRGM and PKP3) mediated 31.0% and 31.2% of manganese-associated ADL disability prevalence, cg06723863 (annotated to ESRP2) mediated 32.4% of copper-associated ADL disability prevalence, cg24433124 (nearest to IER3) mediated 15.8% of arsenic-associated ADL disability prevalence, and cg07905190 and cg17485717 (annotated to FREM1 and TCP11L1) mediated 21.5% and 30.5% of cadmium-associated ADL disability prevalence (all p<0.05). DISCUSSION Our findings suggested that heavy metals contributed to higher prevalence of ADL disability and that locus-specific DNA methylation are partial mediators, providing potential biomarkers for further cellular mechanism studies. https://doi.org/10.1289/EHP10602.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|