1
|
Zhang K, Tian L, Sun Q, Lv J, Ding R, Yu Y, Li Y, Duan J. Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM 2.5 on liver development and injury in offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104585. [PMID: 39489199 DOI: 10.1016/j.etap.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a significant contributor to air pollution. PM2.5 exposure poses a substantial hazard to public health. In recent years, the adverse effects of maternal PM2.5 exposure on fetal health have gradually gained public attention. As the largest organ in the body, the liver has many metabolic and secretory functions. Liver development, as well as factors that interfere with its growth and function, are of concern. This review utilized the adverse outcome pathway (AOP) framework as the analytical approach to demonstrate the link between maternal PM2.5 exposure and potential neonatal liver injury from the molecular to the population level. The excessive generation of reactive oxygen species (ROS), subsequent endoplasmic reticulum (ER) stress, and oxidative stress were regarded as the essential components in this framework, as they could trigger adverse developmental outcomes in the offspring through DNA damage, autophagy dysfunction, mitochondrial injury, and other pathways. To the best of our knowledge, this is the first article based on an AOP framework that elaborates on the influence of maternal exposure to PM2.5 on liver injury occurrence and adverse effects on liver development in offspring. Therefore, this review offered mechanistic insights into the developmental toxicity of PM2.5 in the liver, which provided a valuable basis for future studies and prevention strategies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jianong Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
4
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|