1
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
3
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
5
|
Moulis JM, Nahoui-Zarouri I, Lénon M, Cottet-Rousselle C. Low-level cadmium doses do not jeopardize the insulin secretion pathway of β-cell models until the onset of cell death. J Trace Elem Med Biol 2021; 68:126834. [PMID: 34385036 DOI: 10.1016/j.jtemb.2021.126834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Cadmium is an inescapable environmental pollutant that permeates the food chain and has been debatably associated with diabetes in humans. PURPOSE AND PROCEDURES To probe the specific impact of low-level cadmium exposure on insulin production, largely sub-cytotoxic (50-500 nM) concentrations of cadmium chloride challenged the INS-1 and MIN6 rodent models of pancreatic β-cells for the longest possible time, up to 4 days, before sub-culturing. MAIN FINDINGS The concentration of detectable oxidants, the pattern of the actin cytoskeleton, the translocation of β-catenin, the activity of protein phosphatases, calcium traffic, and the phosphorylation status of several key signaling nodes, such as AMP kinase and mitogen activated kinases including nuclear translocation of Extracellular signal-Regulated Kinase, were all insensitive to the applied very low cadmium doses. Accordingly, low-level cadmium exposure did not alter the insulin secretion ability, the functional hallmark of β-cells, before the onset of cell death. CONCLUSIONS These data define an operational toxicological threshold for these cellular models of β-cells that should be useful to address insulin secretion and the diabetogenic effects of chronic low-level cadmium exposure in animal models and in humans.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- Univ. Grenoble Alpes, CEA, IRIG, 38000, Grenoble, France; Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and Environmental and System Biology (BEeSy), 38000, Grenoble, France.
| | - Inès Nahoui-Zarouri
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and Environmental and System Biology (BEeSy), 38000, Grenoble, France.
| | - Marine Lénon
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and Environmental and System Biology (BEeSy), 38000, Grenoble, France.
| | - Cécile Cottet-Rousselle
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and Environmental and System Biology (BEeSy), 38000, Grenoble, France.
| |
Collapse
|
6
|
Peggion C, Massimino ML, Bonadio RS, Lia F, Lopreiato R, Cagnin S, Calì T, Bertoli A. Regulation of Endoplasmic Reticulum-Mitochondria Tethering and Ca 2+ Fluxes by TDP-43 via GSK3β. Int J Mol Sci 2021; 22:11853. [PMID: 34769284 PMCID: PMC8584823 DOI: 10.3390/ijms222111853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-ER contacts (MERCs), tightly regulated by numerous tethering proteins that act as molecular and functional connections between the two organelles, are essential to maintain a variety of cellular functions. Such contacts are often compromised in the early stages of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). TDP-43, a nuclear protein mainly involved in RNA metabolism, has been repeatedly associated with ALS pathogenesis and other neurodegenerative diseases. Although TDP-43 neuropathological mechanisms are still unclear, the accumulation of the protein in cytoplasmic inclusions may underlie a protein loss-of-function effect. Accordingly, we investigated the impact of siRNA-mediated TDP-43 silencing on MERCs and the related cellular parameters in HeLa cells using GFP-based probes for MERCs quantification and aequorin-based probes for local Ca2+ measurements, combined with targeted protein and mRNA profiling. Our results demonstrated that TDP-43 down-regulation decreases MERCs density, thereby remarkably reducing mitochondria Ca2+ uptake after ER Ca2+ release. Thorough mRNA and protein analyses did not highlight altered expression of proteins involved in MERCs assembly or Ca2+-mediated ER-mitochondria cross-talk, nor alterations of mitochondrial density and morphology were observed by confocal microscopy. Further mechanistic inspections, however, suggested that the observed cellular alterations are correlated to increased expression/activity of GSK3β, previously associated with MERCs disruption.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | | | - Raphael Severino Bonadio
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Stefano Cagnin
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240:106-122. [PMID: 34688722 DOI: 10.1016/j.imlet.2021.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) represents a unique hazard because of the long biological half-life in humans (20-30 years). This metal accumulates in organs causing a continuum of responses, with organ disease/failure as extreme outcome. Some of the cellular and molecular alterations in target tissues can be related to immune-modulating potential of Cd. This metal may cause adverse responses in which components of the immune system function as both mediators and effectors of Cd tissue toxicity, which, in combination with Cd-induced alterations in homeostatic reparative activities may contribute to tissue dysfunction. In this work, current knowledge concerning inflammatory/autoimmune disease manifestations found to be related with cadmium exposure are summarized. Along with epidemiological evidence, animal and in vitro data are presented, with focus on cellular and molecular immune mechanisms potentially relevant for the disease susceptibility, disease promotion, or facilitating development of pre-existing pathologies.
Collapse
|
8
|
Salcedo-Bellido I, Gómez-Peña C, Pérez-Carrascosa FM, Vrhovnik P, Mustieles V, Echeverría R, Fiket Ž, Pérez-Díaz C, Barrios-Rodríguez R, Jiménez-Moleón JJ, Arrebola JP. Adipose tissue cadmium concentrations as a potential risk factor for insulin resistance and future type 2 diabetes mellitus in GraMo adult cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146359. [PMID: 34030321 DOI: 10.1016/j.scitotenv.2021.146359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Adipose tissue has been recently highlighted as a promising matrix for evaluation of cadmium's (Cd) long-term exposure although not frequently considered in epidemiological studies. The association between Cd exposure and type 2 Diabetes Mellitus (T2DM) remains unclear. This work aimed to explore the association between adipose tissue Cd levels and T2DM incidence over a 16-year follow-up in an adult cohort from Southern Spain considering smoking status. We also performed complementary cross-sectional analyses focused on subclinical markers of glucose homeostasis at recruitment. Clinical information was obtained from hospital databases. Socio-demographic characteristics, lifestyle and diet were collected by face-to-face interviews. Homeostatic model assessment (HOMA) values of insulin sensitivity/resistance and β-cell function were calculated using fasting serum glucose, insulin, and C-peptide levels at recruitment. Adipose tissue Cd concentrations were quantified by inductively coupled plasma mass spectrometry. Statistical analyses were performed by means of Cox-regression and multivariable linear regression models. Participants in the 4th quartile (Q4) of Cd concentrations showed a non statistically-significant increased T2DM risk (Hazard Ratio (HR) Q4 vs Q1: 1.97; 95% Confidence Interval (CI): 0.69, 5.66). This association was particularly strong and suggestive in current smokers (HR: 2.19; 95% CI: 0.98, 4.98). Interestingly, smokers in the 2nd tertile (T2) of adipose tissue Cd levels showed increased log-transformed insulin resistance (beta T2 vs T1: 0.52; 95% CI: 0.07, 0.97), as well as higher log-transformed insulin levels (beta T2 vs T1: 0.52; 95% CI: 0.08, 0.95). We found evidences supporting that Cd exposure, particularly from tobacco smoking, could be a risk factor for T2DM. In addition, our results support the potential relevance of adipose tissue as a matrix for Cd exposure assessment.
Collapse
Affiliation(s)
- Inmaculada Salcedo-Bellido
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Celia Gómez-Peña
- Unidad de Gestión Clínica de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Francisco M Pérez-Carrascosa
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Radiation Oncology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), Ljubljana, Slovenia
| | - Vicente Mustieles
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
| | - Ruth Echeverría
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Celia Pérez-Díaz
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| | - José Juan Jiménez-Moleón
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| |
Collapse
|
9
|
Al Doghaither H, Elmorsy E, Al-Ghafari A, Ghulam J. Roles of oxidative stress, apoptosis, and inflammation in metal-induced dysfunction of beta pancreatic cells isolated from CD1 mice. Saudi J Biol Sci 2021; 28:651-663. [PMID: 33424352 PMCID: PMC7785459 DOI: 10.1016/j.sjbs.2020.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The diabetogenic effects of metals including lead (Pb), mercury (Hg), cadmium (Cd), and molybdenum (Mo) have been reported with poorly identified underlying mechanisms. The current study assessed the effect of metals on the roles of oxidative stress, apoptosis, and inflammation in beta pancreatic cells isolated from CD-1 mice, via different biochemical assays. Data showed that the tested metals were cytotoxic to the isolated cells with impaired glucose stimulated insulin secretion (GSIS). This was associated with increased reactive oxygen species (ROS) production, lipid peroxidation, antioxidant enzymes activities, active proapoptotic caspase-3 (cas-3), inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in the intoxicated cells. Furthermore, antioxidant-reduced glutathione (GSH-R), cas-3 inhibitor z-VAD-FMK, IL-6 inhibitor bazedoxifene (BZ), and TNF-α inhibitor etanercept (ET) were found to significantly decrease metal-induced cytotoxicity with improved GSIS in metals' intoxicated cells. In conclusion, oxidative stress, apoptosis, and inflammation can play roles in metals-induced diabetogenic effect.
Collapse
Affiliation(s)
- Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer Metabolism and Epigenetics Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jihan Ghulam
- General Education Department, Dar Al-Hekma University, Jeddah Saudi Arabia
| |
Collapse
|
10
|
Buha A, Đukić-Ćosić D, Ćurčić M, Bulat Z, Antonijević B, Moulis JM, Goumenou M, Wallace D. Emerging Links between Cadmium Exposure and Insulin Resistance: Human, Animal, and Cell Study Data. TOXICS 2020; 8:E63. [PMID: 32867022 PMCID: PMC7560347 DOI: 10.3390/toxics8030063] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Recent research has helped clarify the role of cadmium (Cd) in various pathological states. We have demonstrated Cd involvement in pancreatic cancer, as well as the bioaccumulation of Cd in the pancreas. Bioaccumulation and increased toxicity suggest that Cd may also be involved in other pancreas-mediated diseases, like diabetes. Cd falls into the category of "hyperglycemic" metals, i.e., metals that increase blood glucose levels, which could be due to increased gluconeogenesis, damage to β-cells leading to reduced insulin production, or insulin resistance at target tissue resulting in a lack of glucose uptake. This review addresses the current evidence for the role of Cd, leading to insulin resistance from human, animal, and in vitro studies. Available data have shown that Cd may affect normal insulin function through multiple pathways. There is evidence that Cd exposure results in the perturbation of the enzymes and modulatory proteins involved in insulin signal transduction at the target tissue and mutations of the insulin receptor. Cd, through well-described mechanisms of oxidative stress, inflammation, and mitochondrial damage, may also alter insulin production in β-cells. More work is necessary to elucidate the mechanisms associated with Cd-mediated insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Buha
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Marijana Ćurčić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| | - Marina Goumenou
- Centre of Toxicology and Forensic Sciences, Medicine School, University of Crete, 70013 Heraklion, Greece;
- General Chemical State Laboratory of Greek Republic, 71202 Heraklion, Greece
| | - David Wallace
- Department of Pharmacology & Toxicology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| |
Collapse
|
11
|
Alavi SE, Cabot PJ, Yap GY, Moyle PM. Optimized Methods for the Production and Bioconjugation of Site-Specific, Alkyne-Modified Glucagon-like Peptide-1 (GLP-1) Analogs to Azide-Modified Delivery Platforms Using Copper-Catalyzed Alkyne–Azide Cycloaddition. Bioconjug Chem 2020; 31:1820-1834. [DOI: 10.1021/acs.bioconjchem.0c00291] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Peter John Cabot
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Gee Yi Yap
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
12
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
13
|
Threshold in the toxicology of metals: Challenges and pitfalls of the concept. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Norante RP, Peggion C, Rossi D, Martorana F, De Mario A, Lia A, Massimino ML, Bertoli A. ALS-Associated SOD1(G93A) Decreases SERCA Pump Levels and Increases Store-Operated Ca 2+ Entry in Primary Spinal Cord Astrocytes from a Transgenic Mouse Model. Int J Mol Sci 2019; 20:E5151. [PMID: 31627428 PMCID: PMC6829245 DOI: 10.3390/ijms20205151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.
Collapse
Affiliation(s)
- Rosa Pia Norante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB-IRCCS, 27100 Pavia, Italy.
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB-IRCCS, 27100 Pavia, Italy.
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- CNR-Neuroscience Institute, University of Padova, 35131 Padova, Italy.
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
15
|
Cadmium Sources and Toxicity. TOXICS 2019; 7:toxics7020025. [PMID: 31064047 PMCID: PMC6631073 DOI: 10.3390/toxics7020025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 02/05/2023]
|