1
|
El-Gazzar N, Farouk R, Diab NS, Rabie G, Sitohy B. Antimicrobial and antiproliferative activity of biosynthesized manganese nanocomposite with amide derivative originated by endophytic Aspergillus terreus. Microb Cell Fact 2025; 24:37. [PMID: 39905406 PMCID: PMC11796263 DOI: 10.1186/s12934-025-02651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Scientists have faced difficulties in synthesizing natural substances with potent biological activity from cost-effective sources. Endophytic fungi metabolites with nanoparticles have been utilized to develop a friendly, suitable procedure to address this problem and ameliorate the average amount of antioxidant, antimicrobial, and anticancer materials. Therefore, this study utilized endophytic fungi as a source of the natural extract with biosynthesized manganese nanoparticles (MnNPs) in the form of nanocomposites. METHODS Thirty endophytic fungi were isolated and were assessed for their antioxidant activity by 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial activity. The most potent isolate was identified utilizing 18S rRNA and was applied to purify and separate their natural antimicrobial products by Flash column chromatography. In addition, the most potent product was identified based on instrumental analysis through Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and Gas chromatography-mass spectrometry (GC.MS). The purified product was combined with biosynthsesized manganese nanoparticles (MnNPs) for the production of nanocomposite (MnNCs). Later on, the physicochemical features of MnNPs and its MnNCs were examined and then they were assessed for determination their biological activities. RESULTS The most potent isolate was identified as Aspergillus terreus with accession number OR243300. The antioxidant and antimicrobial product produced by the strain A. terreus was identified as an amide derivative consisting of 3-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-4-oxopentanoic acid (HDOCOX) with the chemical formula C13H18O5. Furthermore, purified HDOCOX, MnNPs and Mn-HDOCOX-NPs nanocomposite (MnNCs) showed significant antimicrobial effectiveness. The minimum inhibitory concentrations (MICs) determined for MnNCs were 10 µg/mL against C. albicans and E.coli. Furthermore, MnNCs were reduced hepatocellular carcinoma viability. CONCLUSION The use of HDOCOX, either alone or in combination with MnNPs, is a potential candidate for inhibiting pathogenic microbes and the development of an anticancer drug pipeline.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Reem Farouk
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nervana S Diab
- Department of Biochemistry, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, 90185, Umeå, Sweden.
- Department of Diagnostics and Intervention, Oncology, Umeå University, 90185, Umeå, Sweden.
| |
Collapse
|
2
|
Yang B, Wang Z, Hu Z, Wang S, Xu J, Li X. Identification of the Hub Genes Linked to Lead (IV)-Induced Spleen Toxicity Using the Rat Model. Biol Trace Elem Res 2024; 202:4618-4639. [PMID: 38153671 DOI: 10.1007/s12011-023-04036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Exposure to lead (Pb) has harmful effects on the organs of both humans and animals, particularly the spleen. However, the precise mechanisms through which Pb (IV) exposure leads to spleen toxicity remain unclear. Hence, this study aimed to identify the key genes and signaling pathways involved in spleen toxicity caused by Pb (IV) incubation. We obtained the dataset GSE59925 from the Gene Expression Omnibus, which included spleen samples treated with lead tetraacetate (PbAc4) as well as control samples on the 1st and 5th day. Through differential expression analysis, we identified 607 and 704 differentially expressed genes (DEGs) in the spleens on the 1st and 5th day following PbAc4 treatment, respectively, with 245 overlapping DEGs between the two time points. Gene ontology analysis revealed that the commonly shared DEGs were primarily involved in signal transduction, drug response, cell proliferation, adhesion, and migration. Pathway analysis indicated that the common DEGs were primarily associated with MAPK, TNF, cAMP, Hippo, and TGF-β signaling pathways. Furthermore, we identified the hub genes such as CXCL10, PARP1, APOE, and VDR contributing to PbAc4-induced spleen toxicity. This study enhances our understanding of the molecular mechanisms underlying Pb (IV) toxicity in the spleen.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236041, China
| | - Zhongyuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Jingen Xu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China.
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China.
| |
Collapse
|
3
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Hezema NN, Eltarahony MM, Abdel Salam SA. Therapeutic and antioxidant potential of bionanofactory Ochrobactrum sp.-mediated magnetite and zerovalent iron nanoparticles against acute experimental toxoplasmosis. PLoS Negl Trop Dis 2023; 17:e0011655. [PMID: 37801440 PMCID: PMC10558077 DOI: 10.1371/journal.pntd.0011655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
The control of toxoplasmosis, a rampant one health disease, has been focussed on conventional antitoxoplasmic agents with their adverse outcomes, including serious side effects, treatment failure and emergence of drug resistant strains. Nanobiotechnology may provide a strong impetus for versatile alternative therapies against toxoplasmosis. Bionanofactory Ochrobactrum sp. strain CNE2 was recruited for the biosynthesis of functionalized magnetite iron nanoparticles (MNPs) and nanozerovalent iron (nZVI) under aerobic and anaerobic conditions and their therapeutic efficacy was evaluated against acute toxoplasmosis in murine model. The formation of self-functionalized spherical nanoparticles varied in size, identity and surface properties were substantiated. Mice were orally administered 20 mg/kg of each formulation on the initial day of infection and continued for seven consecutive days post infection (PI). Parasitological, ultrastructural, immunological, and biochemical studies were performed for assessment of therapeutic activity of biogenic iron nanoparticles (INPs). Parasitologically, MNPs showed the highest antitoxoplasmic efficacy in terms of 96.82% and 91.87% reduction in mean tachyzoite count in peritoneal fluid and liver impression smears, respectively. Lesser percentage reductions were recorded in nZVI-treated infected subgroup (75.44% and 69.04%). In addition, scanning electron microscopy (SEM) examination revealed remarkable reduction in size and extensive damage to the surface of MNPs-treated tachyzoites. MNPs-treated infected mice revealed a statistically significant increase in the serum levels of both interferon gamma (IFN-γ) to 346.2 ± 4.6 pg/ml and reduced glutathione (GSH) to 8.83 ± 0.30 mg/dl that subsequently exerted malondialdehyde (MDA) quenching action. MNPs showed a superior promising antitoxoplasmic activity with respect to both spiramycin (SPI) and nZVI. To best of our knowledge, this is the first study of a bio-safe oral iron nanotherapeutic agent fabricated via an eco-friendly approach that offers promising potential against acute experimental toxoplasmosis.
Collapse
Affiliation(s)
- Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Moustafa Eltarahony
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Sara Ahmed Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Şimşek H, Küçükler S, Gür C, Akaras N, Kandemir FM. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101208-101222. [PMID: 37648919 DOI: 10.1007/s11356-023-29410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Lead acetate (PbAc) is one of the top five most dangerous toxic heavy metals, particularly leading to kidney damage and posing serious health risks in both humans and animals. Sinapic acid (SNP) is a naturally occurring flavonoid found in fruits and vegetables that stands out with its antioxidant, anti-inflammatory, and anticancer properties. This is the first study to investigate the effects of SNP on oxidative stress, inflammation, apoptosis, autophagy and endoplasmic reticulum (ER) stress in PbAc-induced nephrotoxicity in rats by biochemical, molecular and histological methods. 35 Spraque dawley rats were randomly divided into five groups of 7 rats each: control, PbAc, SNP (10mg/kg), PbAc + SNP 5, PbAC + SNP 10. PbAc at a dose of 30 mg/kg body weight was administered via oral gavage alone or in combination with SNP (5 and 10 mg/kg body weight) via oral gavage for seven days. While PbAc impaired renal function by increasing serum urea and creatinine levels, SNP decreased these levels and contributed to the improvement in renal function. The administration of SNP reduced oxidative stress by increasing PbAc-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels, decreasing MDA levels, a marker of increased lipid peroxidation. SNP administration reduced NF-κB, TNF-α, IL-1β, NLRP3, and RAGE mRNA transcription levels, NF-κB, and TNF-α protein levels that are among the PbAc-induced increased inflammation parameters. Decreases in antiapoptotic Bcl-2 and increases in apoptotic Bax, APAF-1, and Caspase-3 due to PbAc exposure, SNP reversed the situation. SNP reduced ER stress caused by PbAc by increasing PERK, IRE1, ATF-6, CHOP, and GRP-78 levels and made it tend to regress. SNP reduced autophagy damage by decreasing the Beclin-1 protein level increased by PbAc. The findings of the present study suggested that SNP attenuates PbAc-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| | - Fatih Mehmet Kandemir
- Deparment of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
6
|
Ciont C, Mesaroș A, Pop OL, Vodnar DC. Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review. J Nanobiotechnology 2023; 21:124. [PMID: 37038224 PMCID: PMC10088223 DOI: 10.1186/s12951-023-01880-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND One-third of the world's population has anemia, contributing to higher morbidity and death and impaired neurological development. Conventional anemia treatment raises concerns about iron bioavailability and gastrointestinal (GI) adverse effects. This research aims to establish how iron oxide nanoparticles (IONPs) interact with probiotic cells and how they affect iron absorption, bioavailability, and microbiota variation. METHODS Pointing to the study of the literature and developing a review and critical synthesis, a robust search methodology was utilized by the authors. The literature search was performed in the PubMed, Scopus, and Web of Science databases. Information was collected between January 2017 and June 2022 using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) protocols for systematic reviews and meta-analyses. We identified 122 compatible research articles. RESULTS The research profile of the selected scientific articles revealed the efficacy of IONPs treatment carried by probiotics versus conventional treatment. Therefore, the authors employed content assessment on four topics to synthesize previous studies. The key subjects of the reviewed reports are the characteristics of the IONPs synthesis method, the evaluation of cell absorption and cytotoxicity of IONPs, and the transport of IONPs with probiotics in treating anemia. CONCLUSIONS To ensure a sufficient iron level in the enterocyte, probiotics with the capacity to attach to the gut wall transport IONPs into the enterocyte, where the maghemite nanoparticles are released.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania
| | - Amalia Mesaroș
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Abdel-Mobdy YE, Abdel-Mobdy AE, Al-Farga A. Evaluation of therapeutic effects of camel milk against the hepatotoxicity and nephrotoxicity induced by fipronil and lead acetate and their mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44746-44755. [PMID: 36697983 PMCID: PMC10076416 DOI: 10.1007/s11356-022-25092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/28/2022] [Indexed: 06/09/2023]
Abstract
Elevated environmental pollution of lead and fipronil is blamed for chronic toxicity. Fipronil and lead acetate are commonly used, but now no adequate data is available concerning the harmful side effects of their mixture. The present work investigated the curative effects of camel milk against lead and fipronil subchronic toxicity individually and as mixture with different doses (1/30 and 1/60 LD50) on male albino rats by oral ingestion. Rats were divided into eight groups; the first group (G1) was the normal health control. G2, G4, G6, and G8 are the normal health groups camel milk. G3 and G4 are ingested by 1/30 LD50 of the fipronil formulation. G5 and G6 are ingested by 1/30 LD50 of lead acetate. G7 and G8 are ingested by 1/60 LD50 of lead acetate and 1/60 LD50 of fipronil formulation. The lead acetate or fipronil and their mixture significantly induced destructive damage to the kidneys and liver function parameters as well as lipid profile and oxidative stress in both organs. Serum LDH activity increased under the same conditions. Most harmful effects were clearly observed in G7 followed by G3 and G5. Histological examination revealed hepatic degeneration and nephropathy in intoxicated rats relative to normal health control, as shown by hypertrophy of hepatocytes in addition to karyomegaly, binucleation, and mild individual cell coagulative and mild hypertrophy, as well as a vacuolar degeneration of tubular epithelium in the kidneys. Both toxicants in their mixture showed more harmful than those of their individual ones. Camel milk treatments into intoxicated animals (lead, fipronil, and mixture groups) attenuated all evaluated parameters, alleviated the harmful influences of the mixture of lead acetate and fipronil, and improved the biomarkers of their oxidative stress.
Collapse
Affiliation(s)
- Yasmin E Abdel-Mobdy
- Entomology and Pesticide Department, Faculty of Agriculture, Cairo University, Gamma St, Cairo, 12613, Egypt.
| | - Ahmed E Abdel-Mobdy
- Dairy Science Department, Faculty of Agriculture, Cairo University, Gamma St, Cairo, 12613, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
9
|
Sangeetha T, Ibrahim KS, Deepa S, Balamuralikrishnan B, Arun M, Velayuthaprabhu S, Saradhadevi KM, Anand AV. Efficiency of Coriandrum sativum (Linn.) and Petroselinum crispum (Mill.) in Enhancing Iron Absorption: An In Silico and In Vitro Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7359081. [PMID: 35535153 PMCID: PMC9078780 DOI: 10.1155/2022/7359081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Coriandrum sativum (Linn.) and Petroselinum crispum (Mill.) are the common herbs used for culinary purposes in daily life. The chlorophyll pigment in plants is being identified with various medicinal values, whereas iron is an essential micronutrient for the proper metabolism of the human body. The current research has been aimed at predicting the role of C. sativum and P. crispum in enhancing iron absorption via an in vitro approach. C. sativum and P. crispum have been analyzed for their capability of being a source of chlorophyll and iron concentration. The extracts prepared from solvents like carbinol, petroleum ether, and water were subjected to the identification of phytoconstituents through gas chromatography-mass spectrometry analysis, and the identified compounds were subjected to in silico studies against the iron-binding receptor, transferrin, to depict the binding affinity of the identified compounds. The carbinol extract was then put through in vitro analytical studies in Caco2 cell lines with a concentration of 500 µg/ml. Current research has shown that the leaves of C. sativum and P. crispum are an excellent source of chlorophyll and iron and has also suggested that these herbs efficiently enhance the absorption of iron in human intestinal cells.
Collapse
Affiliation(s)
- T. Sangeetha
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - K. Syed Ibrahim
- PG & Research Department of Botany, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - S. Deepa
- PG & Research Department of Botany, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - B. Balamuralikrishnan
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - M. Arun
- Department of Obstetrics and Gynaecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - S. Velayuthaprabhu
- Department of Biotechnology, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - K. M. Saradhadevi
- Department of Biochemistry, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - A. Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
ALMANAA TN, RABIE G, El-MEKKAWY RM, YASSIN MA, Saleh N, EL-Gazzar N. Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Al-Mohammadi AR, Ismaiel AA, Ibrahim RA, Moustafa AH, Abou Zeid A, Enan G. Chemical Constitution and Antimicrobial Activity of Kombucha Fermented Beverage. Molecules 2021; 26:5026. [PMID: 34443614 PMCID: PMC8401643 DOI: 10.3390/molecules26165026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Kombucha is a traditional beverage of sweetened black tea fermented with a symbiotic association of acetic acid bacteria and yeasts. In this study, kombucha fermented beverage (KFB) appeared to include nine chemical groups (alcohols, acids, lactones, condensed heterocyclic compounds, antibiotics, esters, aldehydes, fatty acids, and alkaloids) of many bioactive metabolites, as elucidated by gas chromatography-mass spectrometry (GC-MS) and IR spectra. The fermented metabolic components of KFB seem collectively to act in a synergistic action giving rise to the antimicrobial activity. Four types of kombucha preparations (fermented, neutralized, heat-treated and unfermented) were demonstrated with respect to their antimicrobial activity against some pathogenic bacterial and fungal strains using agar well diffusion assay. KFB exerted the strongest antimicrobial activities when compared with neutralized and heat-treated kombucha beverages (NKB and HKB). Staphylococcus aureus ATCC6538 (S. aureus) and Escherichia coli ATCC11229 (E. coli) were the organisms most susceptible to the antimicrobial activity of kombucha beverage preparations. Finally, the KFB preparation showed remarkable inhibitory activity against S. aureus and E. coli bacteria in a brain heart infusion broth and in some Egyptian fruit juices (apple, guava, strawberry, and tomato). These data reveal that kombucha is not only a prophylactic agent, but also appears to be promising as a safe alternative biopreservative, offering protection against pathogenic bacteria and fungi.
Collapse
Affiliation(s)
| | - Ahmed A. Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (A.A.I.); (R.A.I.); (A.A.Z.)
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (A.A.I.); (R.A.I.); (A.A.Z.)
| | - Ahmed H. Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Azza Abou Zeid
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (A.A.I.); (R.A.I.); (A.A.Z.)
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (A.A.I.); (R.A.I.); (A.A.Z.)
| |
Collapse
|
12
|
Osman A, Enan G, Al-Mohammadi AR, Abdel-Shafi S, Abdel-Hameid S, Sitohy MZ, El-Gazzar N. Antibacterial Peptides Produced by Alcalase from Cowpea Seed Proteins. Antibiotics (Basel) 2021; 10:870. [PMID: 34356791 PMCID: PMC8300757 DOI: 10.3390/antibiotics10070870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cowpea seed protein hydrolysates (CPH) were output from cowpea seeds applying alcalase® from Bacillus licheniformis. CPH with an elevated level of hydrolysis was fractionated by size exclusion chromatography (SEC). Both CPH and SEC-portions showed to contain antimicrobial peptides (AMPs) as they inhibited both Gram-positive bacteria, such as Listeria monocytogenes LMG10470 (L. monocytogenes), Listeria innocua. LMG11387 (L. innocua), Staphylococcus aureus ATCC25923 (S.aureus), and Streptococcus pyogenes ATCC19615 (St.pyogenes), and Gram-negative bacteria, such as Klebsiella pnemoniae ATCC43816 (K. pnemoniae), Pseudomonas aeroginosa ATCC26853 (P. aeroginosa), Escherichia coli ATCC25468) (E.coli) and Salmonella typhimurium ATCC14028 (S. typhimurium).The data exhibited that both CPH and size exclusion chromatography-fraction 1 (SEC-F1) showed high antibacterial efficiency versus almost all the assessed bacteria. The MIC of the AMPs within SEC-F1 and CPHs were (25 µg/mL) against P. aeruginosa, E.coli and St. pyogenes. However, higher MICsof approximately 100-150 µg/mL showed for both CPHs and SEC-F1 against both S. aureus and L. innocua; it was 50 µg/mL of CPH against S.aureus. The Electro-spray-ionization-mass-spectrometry (ESI-MS) of fraction (1) revealed 10 dipeptides with a molecular masses arranged from 184 Da to 364 Da and one Penta peptide with a molecular mass of approximately 659 Da inthe case of positive ions. While the negative ions showed 4 dipeptides with the molecular masses that arranged from 330 Da to 373 Da. Transmission electron microscope (TEM) demonstrated that the SEC-F1 induced changes in the bacterial cells affected. Thus, the results suggested that the hydrolysis of cowpea seed proteins by Alcalase is an uncomplicated appliance to intensify its antibacterial efficiency.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | | | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Samar Abdel-Hameid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| |
Collapse
|