1
|
Narayan A, Diogo BS, Mansilha C, Espinha Marques J, Flores D, Antunes SC. Assessment of ecotoxicological effects of Fojo coal mine waste elutriate in aquatic species (Douro Coalfield, North Portugal). FRONTIERS IN TOXICOLOGY 2024; 6:1334169. [PMID: 38465195 PMCID: PMC10920227 DOI: 10.3389/ftox.2024.1334169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials. Methods: Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor. Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.
Collapse
Affiliation(s)
- Aracelis Narayan
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Bárbara S. Diogo
- Instituto Ciências Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| | - Catarina Mansilha
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Jorge Espinha Marques
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Deolinda Flores
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Sara C. Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
2
|
Stojsavljević A, Lakićević N, Pavlović S. Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. TOXICS 2023; 11:753. [PMID: 37755763 PMCID: PMC10536388 DOI: 10.3390/toxics11090753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Environmental pollutants, particularly toxic trace metals with neurotoxic potential, have been related to the genesis of autism. One of these metals that stands out, in particular, is lead (Pb). We conducted an in-depth systematic review and meta-analysis of peer-reviewed studies on Pb levels in biological materials retrieved from autistic children (cases) and neurotypical children (controls) in this work. A systematic review was conducted after the careful selection of published studies according to established criteria to gain a broad insight into the higher or lower levels of Pb in the biological materials of cases and controls, and the findings were then strengthened by a meta-analysis. The meta-analysis included 17 studies (hair), 13 studies (whole blood), and 8 studies (urine). The overall number of controls/cases was 869/915 (hair), 670/755 (whole blood), and 344/373 (urine). This meta-analysis showed significantly higher Pb levels in all three types of biological material in cases than in controls, suggesting a higher body Pb burden in autistic children. Thus, environmental Pb exposure could be related to the genesis of autism. Since no level of Pb can be considered safe, the data from this study undoubtedly point to the importance of regularly monitoring Pb levels in autistic children.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|