1
|
Jin L, Chen X, Pang C, Zhou L, Liu Y, Sun Y, Xu L, Wang Y, Chen Y. Investigation of the antibacterial mechanism of the novel bactericide dioctyldiethylenetriamine (Xinjunan). PEST MANAGEMENT SCIENCE 2023; 79:2780-2791. [PMID: 36924248 DOI: 10.1002/ps.7456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chemical control is an important method for tackling crop diseases. Clarifying the antibacterial mechanisms of bactericides is useful for developing new bactericides and for continuous plant disease control. In this study, the antibacterial mechanism of a novel bactericide, dioctyldiethylenetriamine (Xinjunan), which affects adenosine triphosphate (ATP) synthesis, was investigated. RESULTS The results of an in vitro inhibition activity assay showed that dioctyldiethylenetriamine inhibited the growth of a variety of plant pathogenic bacteria, especially that of Xanthomonas spp. Scanning electron microscopy demonstrated that dioctyldiethylenetriamine caused cell distortion and rupture. To investigate the molecular mechanism underlying the antibacterial effect of dioctyldiethylenetriamine, transcriptome sequencing (RNA-seq) was performed for Xanthomonas oryzae pv. oryzae (Xoo, PXO99A) treated with dioctyldiethylenetriamine, which has strong antibacterial effects against xanthomonads. The results showed that differentially expressed genes were enriched mainly in the oxidative phosphorylation and tricarboxylic acid (TCA) cycle pathways after treatment. Moreover, the dioctyldiethylenetriamine treatment exhibited reduction in enzyme activities in the TCA cycle, decreased intracellular nicotinamide adenine dinucleotide and ATP contents, and increased accumulation of reactive oxygen species. In addition, dioctyldiethylenetriamine exhibited an inhibitory effect on the growth of other bacterial pathogens by reducing ATP synthesis. CONCLUSION This is the first report of the mechanism by which dioctyldiethylenetriamine inhibits ATP synthesis by affecting oxidative phosphorylation and TCA cycle pathways in bacteria. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Liang Xu
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yongxing Wang
- Shandong Vicome Greenland Chemical Co., Ltd, Shandong, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei Research Center, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Wang L, Yang H, Wu M, Zhang J, Zhang H, Mao Z, Chen X. Integrative transcriptome and proteome revealed high-yielding mechanisms of epsilon-poly-L-lysine by Streptomyces albulus. Front Microbiol 2023; 14:1123050. [PMID: 37152744 PMCID: PMC10157215 DOI: 10.3389/fmicb.2023.1123050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction ε-poly-L-lysine (ε-PL) is a high value, widely used natural antimicrobial peptide additive for foods and cosmetic products that is mainly produced by Streptomyces albulus. In previous work, we developed the high-yield industrial strain S. albulus WG-608 through successive rounds of engineering. Methods Here, we use integrated physiological, transcriptomic, and proteomics association analysis to resolve the complex mechanisms underlying high ε-PL production by comparing WG-608 with the progenitor strain M-Z18. Results Our results show that key genes in the glycolysis, pentose phosphate pathway, glyoxylate pathway, oxidative phosphorylation, and L-lysine biosynthesis pathways are differentially upregulated in WG-608, while genes in the biosynthetic pathways for fatty acids, various branched amino acids, and secondary metabolite by-products are downregulated. This regulatory pattern results in the introduction of more carbon atoms into L-lysine biosynthesis and ε-PL production. In addition, significant changes in the regulation of DNA replication, transcription, and translation, two component systems, and quorum sensing may facilitate the adaptability to environmental pressure and the biosynthesis of ε-PL. Overexpression of ppk gene and addition of polyP6 further enhanced the ε-PL production. Discussion This study enables comprehensive understanding of the biosynthetic mechanisms of ε-PL in S. albulus WG-608, while providing some genetic modification and fermentation strategies to further improve the ε-PL production.
Collapse
|
5
|
Rosendahl S, Tamman H, Brauer A, Remm M, Hõrak R. Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Sci Rep 2020; 10:9230. [PMID: 32513960 PMCID: PMC7280312 DOI: 10.1038/s41598-020-65504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Chromosomal toxin-antitoxin (TA) systems are widespread genetic elements among bacteria, yet, despite extensive studies in the last decade, their biological importance remains ambivalent. The ability of TA-encoded toxins to affect stress tolerance when overexpressed supports the hypothesis of TA systems being associated with stress adaptation. However, the deletion of TA genes has usually no effects on stress tolerance, supporting the selfish elements hypothesis. Here, we aimed to evaluate the cost and benefits of chromosomal TA systems to Pseudomonas putida. We show that multiple TA systems do not confer fitness benefits to this bacterium as deletion of 13 TA loci does not influence stress tolerance, persistence or biofilm formation. Our results instead show that TA loci are costly and decrease the competitive fitness of P. putida. Still, the cost of multiple TA systems is low and detectable in certain conditions only. Construction of antitoxin deletion strains showed that only five TA systems code for toxic proteins, while other TA loci have evolved towards reduced toxicity and encode non-toxic or moderately potent proteins. Analysis of P. putida TA systems' homologs among fully sequenced Pseudomonads suggests that the TA loci have been subjected to purifying selection and that TA systems spread among bacteria by horizontal gene transfer.
Collapse
Affiliation(s)
- Sirli Rosendahl
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hedvig Tamman
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Age Brauer
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|