1
|
Harish J, Prasannakumar MK, Venkateshbabu G, Karan R, Mahesh HB, Devanna P, Sarangi AN, Patil SS, Tejashwini V, Lohithaswa HC, Kagale S. Molecular and genomic insights into the pathogenicity of Sarocladium zeae causing maize stalk rot disease. Microbiol Res 2025; 296:128146. [PMID: 40168814 DOI: 10.1016/j.micres.2025.128146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025]
Abstract
Post-flowering stalk rot (PFSR) of maize has been traditionally associated with Fusarium verticillioides. Conversely, this study reveals Sarocladium zeae as a new phytopathogen responsible for the disease. This research was conducted to gain a comprehensive understanding of S. zeae by investigating its pathogenic mechanisms, profiling its metabolome, and deciphering its genomic characteristics. Maize stalks displaying stalk rot symptoms were collected from various regions of India. S. zeae was isolated and characterized using ITS and TEF-1α sequencing. Cultures of S. zeae exhibited slower growth on PDA medium compared to F. verticillioides, which dominated due to its rapid growth rate. Pathogenicity was confirmed through a toothpick inoculation assay. The symptoms induced by S. zeae was characterized by powdery, dry, pale brown-black discoloration, were distinct from the typical dark-brown lesions of Fusarium stalk rot. Enzymatic assays revealed increased activity of β-glucosidase, cellulase, and pectate lyase in infected stalks, while qPCR analysis showed the upregulation of endoglucanase and β-glucosidase genes in infected stalks underscored the critical roles of cellulase and β-glucosidase in pathogenicity Metagenomic analysis identified S. zeae as the predominant species in infected stalk samples. Genome assembly revealed the pathogen's complete genetic repertoire, including genes encoding effector proteins and CAZymes involved in cell wall degradation. Moreover, we have demonstrated that the S. zeae as a causal agent of maize stalk rot and further shedding light on its transition from an endophytic to a pathogenic lifestyle. Taken together, this research represents the first report to attribute maize stalk rot to S. zeae and to present its complete genome assembly, significantly advancing the understanding of its biology and pathogenic potential.
Collapse
Affiliation(s)
- J Harish
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - M K Prasannakumar
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India.
| | - Gopal Venkateshbabu
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - R Karan
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - H B Mahesh
- Genomics and Genome Editing Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka 584104, India
| | | | - Swathi S Patil
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - V Tejashwini
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - H C Lohithaswa
- AICRP on Pigeonpea, ZARS, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| |
Collapse
|
2
|
Unartngam J, Kopmoo N, Pinruan U, Kosawang C, Jørgensen HJL. Molecular and Morphological Identification of Sarocladium Species Causing Sheath Rot of Rice in Thailand and Their Division into Physiological Races. J Fungi (Basel) 2024; 10:535. [PMID: 39194861 DOI: 10.3390/jof10080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Sheath rot and dirty panicle are some of the major diseases of rice in Thailand. The diseases are traditionally considered to be caused by the pathogen Sarocladium oryzae and damage and lower both the quantity and quality of rice grain. In this study, 32 fungal isolates collected from the central and northeastern regions of Thailand were analysed phylogenetically using three molecular markers (ITS, D1/D2 of 28S rDNA and ACT) and physiological races were determined on 10 differential rice cultivars. We found that S. oryzae is not the only causal agent of sheath rot in Thailand, but S. attenuatum was also found. Despite having similar morphological features, the phylogenetic analysis recognised 11 of 32 isolates as S. attenuatum and the remaining isolates as S. oryzae. This is the first report of S. attenuatum causing sheath rot of rice in Thailand in addition to S. oryzae. Evaluation of physiological races revealed high pathogenic diversity of the two species. Thus, 16 and 11 physiological races were recorded from 21 isolates of S. oryzae and 11 isolates of S. attenuatum, respectively. These results indicate that both S. oryzae and S. attenuatum are the causal agents of rice sheath rot and dirty panicle in Thailand and that they are pathologically diverse.
Collapse
Affiliation(s)
- Jintana Unartngam
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Noppol Kopmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Umpawa Pinruan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Rangel LI, Bolton MD. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102233. [PMID: 35679804 DOI: 10.1016/j.pbi.2022.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.
Collapse
Affiliation(s)
- Lorena I Rangel
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Melvin D Bolton
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA.
| |
Collapse
|
4
|
Côrtes MVDCB, Guimarães RA, Freire DMG, Prabhu AS, Silva-Lobo VLD. An overview of the virulence factors and the biocontrol potential of Sarocladium oryzae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Peeters KJ, Audenaert K, Höfte M. Survival of the fittest: how the rice microbial community forces Sarocladium oryzae into pathogenicity. FEMS Microbiol Ecol 2021; 97:6034012. [PMID: 33316039 DOI: 10.1093/femsec/fiaa253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
The fungus Sarocladium oryzae (Sawada) causes rice sheath rot and produces the phytotoxins cerulenin and helvolic acid. Both toxins show antimicrobial activity but only helvolic acid production in the rice sheath correlates with virulence. Sarocladium oryzae isolates that differ in their toxin production were used to study their interaction with the rice culturable bacterial endophyte community. The diversity and community structure was defined in the edge of sheath rot lesions, followed by a null model-based co-occurrence analysis to discover pairwise interactions. Non-random pairs were co-cultured to study the nature of the interactions and the role of the toxins herein. Compared to healthy sheaths, endophyte diversity strongly increased when infected with the least virulent S. oryzae isolates producing low amounts of toxins. Virulent S. oryzae isolates did not affect diversity but caused strong shifts in species composition. The endophyte community of healthy rice plants was dominated by B. cereus. This bacterium was enriched in lesions produced by low-virulent S. oryzae isolates and caused hyphal lysis. Contrarily, helvolic acid producers eliminated this bacterium from the sheath endosphere. We conclude that S. oryzae needs to produce antibiotics to defend itself against antagonistic rice endophytes to successfully colonize and infect the rice sheath.
Collapse
Affiliation(s)
- K J Peeters
- Faculty of Bioscience Engineering, Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - K Audenaert
- Faculty of Bioscience Engineering, Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - M Höfte
- Faculty of Bioscience Engineering, Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Peeters KJ, Ameye M, Demeestere K, Audenaert K, Höfte M. Auxin, Abscisic Acid and Jasmonate Are the Central Players in Rice Sheath Rot Caused by Sarocladium oryzae and Pseudomonas fuscovaginae. RICE (NEW YORK, N.Y.) 2020; 13:78. [PMID: 33242152 PMCID: PMC7691414 DOI: 10.1186/s12284-020-00438-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 06/01/2023]
Abstract
Sheath rot is an emerging rice disease that causes severe yield losses worldwide. The main causal agents are the toxin producers Sarocladium oryzae and Pseudomonas fuscovaginae. The fungus S. oryzae produces helvolic acid and cerulenin and the bacterium P. fuscovaginae produces cyclic lipopeptides. Helvolic acid and the lipopeptide, fuscopeptin, inhibit membrane-bound H+-ATPase pumps in the rice plant. To manage rice sheath rot, a better understanding of the host response and virulence strategies of the pathogens is required. This study investigated the interaction of the sheath rot pathogens with their host and the role of their toxins herein. Japonica rice was inoculated with high- and low-helvolic acid-producing S. oryzae isolates or with P. fuscovaginae wild type and fuscopeptin mutant strains. During infection, cerulenin, helvolic acid and the phytohormones abscisic acid, jasmonate, auxin and salicylic acid were quantified in the sheath. In addition, disease severity and grain yield parameters were assessed. Rice plants responded to high-toxin-producing S. oryzae and P. fuscovaginae strains with an increase in abscisic acid, jasmonate and auxin levels. We conclude that, for both pathogens, toxins play a core role during sheath rot infection. S. oryzae and P. fuscovaginae interact with their host in a similar way. This may explain why both sheath rot pathogens cause very similar symptoms despite their different nature.
Collapse
Affiliation(s)
- K J Peeters
- Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - M Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - K Demeestere
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - K Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - M Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
7
|
Musonerimana S, Bez C, Licastro D, Habarugira G, Bigirimana J, Venturi V. Pathobiomes Revealed that Pseudomonas fuscovaginae and Sarocladium oryzae Are Independently Associated with Rice Sheath Rot. MICROBIAL ECOLOGY 2020; 80:627-642. [PMID: 32474660 DOI: 10.1007/s00248-020-01529-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Rice sheath rot has been mainly associated with the bacterial pathogen Pseudomonas fuscovaginae and in some cases to the fungal pathogen Sarocladium oryzae; it is yet unclear if they are part of a complex disease. The bacterial and fungal community associated with rice sheath rot symptomatic and asymptomatic rice plants was determined/studied with the main aim to shed light on the pathogen(s) causing rice sheath rot. Plant samples were collected from different rice varieties in two locations (highland and lowland) in two rice-growing seasons (wet and dry season) in Burundi. Our results showed that the bacterial Pseudomonas genus was prevalent in highland in both rice-growing seasons and was not affected by rice plant varieties. Pseudomonas sequence reads displayed a significant high similarity to Pseudomonas fuscovaginae indicating that it is the causal agent of rice sheath rot as previously reported. The fungal Sarocladium genus was on the other hand prevalent in lowland only in the wet season; the sequence reads were most significantly similar to Sarocladium oryzae. These studies showed that plant microbiome analysis is very useful in determining the microorganisms involved in a plant disease. P. fuscovaginae and S. oryzae were prevalent in symptomatic samples in highland and lowland respectively being present independently and hence are not part of a complex disease. The significant presence of other bacterial and fungal taxa in symptomatic samples is also discussed possibly making this disease more complex. Finally, we also report the microbial communities that are associated with the plant sheath in symptomatic and asymptomatic plants from the same rice fields.
Collapse
Affiliation(s)
- Samson Musonerimana
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | - Georges Habarugira
- International Rice Research Institute (IRRI)-Africa Regional Crop Improvement Office, Burundi University-Faculty of Agronomy and Bio-Engineering, Avenue de l'UNESCO No 2, Bujumbura, Burundi
| | - Joseph Bigirimana
- International Rice Research Institute (IRRI)-Africa Regional Crop Improvement Office, Burundi University-Faculty of Agronomy and Bio-Engineering, Avenue de l'UNESCO No 2, Bujumbura, Burundi
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|