1
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
2
|
Guru S, Bellapukonda S, Mohanty CR, Radhakrishnan RV, Gupta A. A rare manifestation of serum sickness after common krait envenomation in a patient treated with polyvalent anti-snake venom in India: Presentation and challenges. J Family Med Prim Care 2024; 13:2792-2794. [PMID: 39071008 PMCID: PMC11272001 DOI: 10.4103/jfmpc.jfmpc_417_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/20/2023] [Accepted: 01/17/2024] [Indexed: 07/30/2024] Open
Abstract
Envenomation from snakebites is a significant public health concern in the Southeast Asian region resulting in considerable mortality and morbidity. Anti-snake venom (ASV) despite being the only rescue can bring forth several acute and delayed adverse effects. Among them, serum sickness is a late manifestation after treatment with ASV that presents after 5-14 days of treatment. However, there is no specific definition to diagnose serum sickness or proven treatment. Here, we present a case of serum sickness to provide an insight into this unventured zone, briefing the presentation, treatment and probable reason for serum sickness and its prevention after common krait envenomation and treatment with polyvalent ASV in India.
Collapse
Affiliation(s)
- Satyabrata Guru
- Department of Trauma and Emergency, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Snigda Bellapukonda
- Department of Anaesthesiology, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Chitta R. Mohanty
- Department of Trauma and Emergency, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | | | - Anju Gupta
- Department of Anaesthesia, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Sandesha VD, Naveen P, Manikanta K, Mahalingam SS, Girish KS, Kemparaju K. Hump-Nosed Pit Viper ( Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine. Cells 2024; 13:994. [PMID: 38920625 PMCID: PMC11201549 DOI: 10.3390/cells13120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.
Collapse
Affiliation(s)
- Vaddaragudisalu D. Sandesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Puttaswamy Naveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, Karnataka, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| |
Collapse
|
4
|
Lim ASS, Tan KY, Tan CH. Immunoreactivity and neutralization efficacy of Pakistani Viper Antivenom (PVAV) against venoms of Saw-scaled Vipers (Echis carinatus subspp.) and Western Russell's Vipers (Daboia russelii) from the Indian subcontinent. Acta Trop 2024; 250:107099. [PMID: 38097152 DOI: 10.1016/j.actatropica.2023.107099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/31/2023]
Abstract
Snakebite envenoming (SBE) is a priority Neglected Tropical Disease listed by the World Health Organization. South Asia is heavily affected, and virtually all countries in the region import polyvalent antivenom products from India for clinical use. The imported antivenoms, however, have suboptimal effectiveness due to geographical venom variation. Recently, a domestic bivalent product, named Pakistani Viper Antivenom (PVAV) has been developed specifically for Pakistani vipers, Echis carinatus sochureki and Daboia russelii. As a bivalent viperid antivenom, it is unknown yet if PVAV exhibits higher immunological binding and neutralization activities against viper venoms from distant locales compared with polyvalent antivenoms manufactured in India. This study thus examined the preclinical efficacy of PVAV against venoms of Western Russell's Vipers and Saw-scaled Viper subspecies from selected locales in the Indian subcontinent. PVAV generally outperformed the commonly used VINS polyvalent antivenom (VPAV, manufactured in India) in binding toward venoms, and showed superior or comparable neutralization efficacy against the venom procoagulant and hemorrhagic effects of Saw-scaled Vipers as well as Russell's Vipers from Pakistan and Sri Lanka. Based on normalized potency values, PVAV is far more potent than VPAV in neutralizing the lethality of all viper venoms, except that of the Indian Russell's Viper. The study shows conserved antigenicity of toxins responsible for major toxicity across these viperid venoms, and suggests the feasible production of a viper-specific antivenom with higher potency and broader geographical utility for the region.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Three venomous snakes of the Gloydius genus belonging to the Viperidae family cause most snake envenomations in South Korea. Envenomation signs often include local swelling, coagulopathy, and rhabdomyolysis. The benefit of additional antivenom after the initial does is unclear. METHODS This retrospective study divided patients into four groups according to the presence of rhabdomyolysis (creatine kinase ≥1000 IU/L) and coagulopathy, which were defined using the Korean Society on Thrombosis and Hemostasis disseminated intravascular coagulation score (rhabdomyolysis, coagulopathy, combination, and local effects groups). We describe the clinical features of envenomation and the antivenom response. RESULTS Greater local swelling predicted more severe snakebite pain. Ninety of the 231 enrolled patients (38.9%) developed rhabdomyolysis. The patients with severe rhabdomyolysis in the combination group displayed higher peak creatine kinase activity than the rhabdomyolysis group. Seven patients with rhabdomyolysis, including two patients requiring kidney replacement therapy, developed acute kidney injury, but the incidence of acute kidney injury did not differ between the combination group and rhabdomyolysis group. Bleeding developed in 3.5% of the patients, but its incidence did not differ between the combination and coagulopathy groups. Approximately half of all patients needed repeated antivenom administration, mainly due to the local envenomation effect. Earlier administration of additional antivenom for progressive local swelling did not reduce the hospitalization duration. CONCLUSION Rhabdomyolysis is one of the major effects of Gloydius snake envenomation in South Korea, although it is not associated with the same risk of clinical deterioration as coagulopathy. Additionally, the ability of antivenom to ameliorate local swelling should be investigated to prevent unnecessary antivenom administration in South Korea.
Collapse
Affiliation(s)
- Jeong Mi Moon
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.,Department of Emergency Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Republic of Korea
| | - Byeong Jo Chun
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.,Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong Soo Cho
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| |
Collapse
|
6
|
In Vitro Efficacy of Antivenom and Varespladib in Neutralising Chinese Russell's Viper ( Daboia siamensis) Venom Toxicity. Toxins (Basel) 2023; 15:toxins15010062. [PMID: 36668882 PMCID: PMC9864994 DOI: 10.3390/toxins15010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The venom of the Russell's viper (Daboia siamensis) contains neurotoxic and myotoxic phospholipase A2 toxins which can cause irreversible damage to motor nerve terminals. Due to the time delay between envenoming and antivenom administration, antivenoms may have limited efficacy against some of these venom components. Hence, there is a need for adjunct treatments to circumvent these limitations. In this study, we examined the efficacy of Chinese D. siamensis antivenom alone, and in combination with a PLA2 inhibitor, Varespladib, in reversing the in vitro neuromuscular blockade in the chick biventer cervicis nerve-muscle preparation. Pre-synaptic neurotoxicity and myotoxicity were not reversed by the addition of Chinese D. siamensis antivenom 30 or 60 min after venom (10 µg/mL). The prior addition of Varespladib prevented the neurotoxic and myotoxic activity of venom (10 µg/mL) and was also able to prevent further reductions in neuromuscular block and muscle twitches when added 60 min after venom. The addition of the combination of Varespladib and antivenom 60 min after venom failed to produce further improvements than Varespladib alone. This demonstrates that the window of time in which antivenom remains effective is relatively short compared to Varespladib and small-molecule inhibitors may be effective in abrogating some activities of Chinese D. siamensis venom.
Collapse
|
7
|
Thakshila P, Hodgson WC, Isbister GK, Silva A. In Vitro Neutralization of the Myotoxicity of Australian Mulga Snake ( Pseudechis australis) and Sri Lankan Russell's Viper ( Daboia russelii) Venoms by Australian and Indian Polyvalent Antivenoms. Toxins (Basel) 2022; 14:302. [PMID: 35622549 PMCID: PMC9144940 DOI: 10.3390/toxins14050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the neutralisation of Sri Lankan Russell's viper (Daboia russelii) and Australian mulga snake (Pseudechis australis) venom-induced myotoxicity by Indian (Vins and Bharat) and Australian (Seqirus) polyvalent antivenoms, using the in vitro chick biventer skeletal muscle preparation. Prior addition of Bharat or Vins antivenoms abolished D. russelii venom (30 µg/mL)-mediated inhibition of direct twitches, while Australian polyvalent antivenom was not protective. Bharat antivenom prevented, while Vins and Australian polyvalent antivenoms partially prevented, the inhibition of responses to exogenous KCl. Myotoxicity of Mulga venom (10 µg/mL) was fully neutralised by the prior addition of Australian polyvalent antivenom, partially neutralised by Vins antivenom but not by Bharat antivenom. Although the myotoxicity of both venoms was partially prevented by homologous antivenoms when added 5 min after the venom, with an increasing time delay between venom and antivenom, the reversal of myotoxicity gradually decreased. However, antivenoms partially prevented myotoxicity even 60 min after venom. The effect of antivenoms on already initiated myotoxicity was comparable to physical removal of the toxins by washing the bath at similar time points, indicating that the action of the antivenoms on myotoxicity is likely to be due to trapping the toxins or steric hindrance within the circulation, not allowing the toxins to reach target sites in muscles.
Collapse
Affiliation(s)
- Prabhani Thakshila
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50008, Sri Lanka;
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia
| | - Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50008, Sri Lanka;
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
8
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|