1
|
Smith HL, Broszczak DA, van der Burg CA, Surm JM, Liggins L, Norton RS, Prentis PJ. A comparative analysis of toxin gene families across diverse sea anemone species. Toxicon X 2025; 26:100217. [PMID: 40162058 PMCID: PMC11952004 DOI: 10.1016/j.toxcx.2025.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025] Open
Abstract
All species from order Actiniaria (sea anemones) are venomous, even though most are of no threat to humans. Currently, we know very little about the toxin gene complement of highly venomous members of this order. To address this gap in knowledge, we sequenced the transcriptome of the highly venomous and medically significant Hell's Fire sea anemone, Actinodendron plumosum, as well as five distantly related species, Cryptodendrum adhaesivum, Epiactis australiensis, Heteractis aurora, Isactinia olivacea and Stichodactyla mertensii. We used bioinformatic approaches to identify their toxin gene complements and performed a comparative evolutionary analysis of seven understudied toxin families. Of the 16 toxin families identified, 12-40 candidate toxins were found in the six new sea anemone transcriptomes, with only 12 candidates in eight toxin families identified in A. plumosum. Across 26 sea anemone species, six neurotoxin families showed evidence of taxonomic restriction, whereas the phospholipase A2 toxin family was ubiquitously distributed. Additionally, we identified two alternative forms for the phospholipase A2 toxin family, a 10- and 14-cysteine framework, which warrant further structural and functional characterisation. Overall, we have identified a comprehensive list of toxins from a wide diversity of sea anemone species that provides the basis for future research to structurally and functionally characterise novel candidates for potential use as therapeutics or for agricultural applications.
Collapse
Affiliation(s)
- Hayden L. Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Daniel A. Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4000, Australia
| | - Chloé A. van der Burg
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Joachim M. Surm
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, D-80539, Germany
| | - Libby Liggins
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Tong Z, Zhang S, Chen S, Sun R, He P, Song L, Hu J, Hou Y, Zhan X, Zhang Q. Sea Anemone-Inspired Slippery Liquid-Infused Porous Surface (SLIPS) with Bionic Cilia for Responsive 4D Antifouling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401658. [PMID: 38693074 DOI: 10.1002/smll.202401658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/01/2024] [Indexed: 05/03/2024]
Abstract
The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.
Collapse
Affiliation(s)
- Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Shen Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Rui Sun
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Peng He
- Wuhan Second Ship Design and Research Institute, Wuhan, 430205, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Jiankun Hu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
3
|
Smith HL, Broszczak DA, Bryan SE, Norton RS, Prentis PJ. Molecular Insights into the Low Complexity Secreted Venom of Calliactis polypus. Genome Biol Evol 2024; 16:evae154. [PMID: 39018436 PMCID: PMC11299110 DOI: 10.1093/gbe/evae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Sea anemones are venomous animals that rely on their venom for prey capture, defense against predators, and intraspecific competition. Currently, comprehensive molecular and evolutionary analyses of the toxin repertoire for sea anemones are limited by a lack of proteomic data for most species. In this study, proteo-transcriptomic analysis was used to expand our knowledge of the proteinaceous components of sea anemone venom by determining the secreted venom proteome of Calliactis polypus. Electromechanical stimulation was used to obtain the secreted venom of C. polypus. We identified a low complexity proteome that was dominated by toxins with similarity to known neurotoxins, as well as six novel toxin candidates. The novel putative toxin candidates were found to be taxonomically restricted to species from the superfamily Metridioidea. Furthermore, the secreted venom of C. polypus had only three putative toxins in common with the venom of acontia from the same species and little similarity with the secreted venom of closely related species. Overall, this demonstrates that regionalized and lineage-specific variability in toxin abundance is common among sea anemone species. Moreover, the limited complexity of the toxin repertoire found in C. polypus supports the idea that peptide neurotoxins make up the dominant toxin arsenal found in the venom of sea anemones.
Collapse
Affiliation(s)
- Hayden L Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4000, Australia
| | - Scott E Bryan
- School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
4
|
Hoepner CM, Stewart ZK, Qiao R, Fobert EK, Prentis PJ, Colella A, Chataway T, Burke da Silva K, Abbott CA. Proteotransciptomics of the Most Popular Host Sea Anemone Entacmaea quadricolor Reveals Not All Toxin Genes Expressed by Tentacles Are Recruited into Its Venom Arsenal. Toxins (Basel) 2024; 16:85. [PMID: 38393163 PMCID: PMC10893224 DOI: 10.3390/toxins16020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.
Collapse
Affiliation(s)
- Cassie M. Hoepner
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Zachary K. Stewart
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert Qiao
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Emily K. Fobert
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter J. Prentis
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Alex Colella
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Tim Chataway
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Catherine A. Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
5
|
Li M, Mao K, Huang M, Liao Y, Fu J, Pan K, Shi Q, Gao B. Venomics Reveals the Venom Complexity of Sea Anemone Heteractis magnifica. Mar Drugs 2024; 22:71. [PMID: 38393042 PMCID: PMC10890322 DOI: 10.3390/md22020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Kailin Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Meiling Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Yanling Liao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Jinxing Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Kun Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| |
Collapse
|
6
|
Smith HL, Prentis PJ, Bryan SE, Norton RS, Broszczak DA. Acontia, a Specialised Defensive Structure, Has Low Venom Complexity in Calliactis polypus. Toxins (Basel) 2023; 15:218. [PMID: 36977109 PMCID: PMC10051995 DOI: 10.3390/toxins15030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Phylum Cnidaria represents a unique group among venomous taxa, with its delivery system organised as individual organelles, known as nematocysts, heterogeneously distributed across morphological structures rather than packaged as a specialised organ. Acontia are packed with large nematocysts that are expelled from sea anemones during aggressive encounters with predatory species and are found in a limited number of species in the superfamily Metridioidea. Little is known about this specialised structure other than the commonly accepted hypothesis of its role in defence and a rudimentary understanding of its toxin content and activity. This study utilised previously published transcriptomic data and new proteomic analyses to expand this knowledge by identifying the venom profile of acontia in Calliactis polypus. Using mass spectrometry, we found limited toxin diversity in the proteome of acontia, with an abundance of a sodium channel toxin type I, and a novel toxin with two ShK-like domains. Additionally, genomic evidence suggests that the proposed novel toxin is ubiquitous across sea anemone lineages. Overall, the venom profile of acontia in Calliactis polypus and the novel toxin identified here provide the basis for future research to define the function of acontial toxins in sea anemones.
Collapse
Affiliation(s)
- Hayden L. Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Scott E. Bryan
- School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| | - Daniel A. Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
7
|
Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins (Basel) 2022; 15:8. [PMID: 36668828 PMCID: PMC9863223 DOI: 10.3390/toxins15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Collapse
|
8
|
Delgado A, Benedict C, Macrander J, Daly M. Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms. Mar Drugs 2022; 20:730. [PMID: 36547877 PMCID: PMC9782873 DOI: 10.3390/md20120730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Charlotte Benedict
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33815, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Venom system variation and the division of labor in the colonial hydrozoan Hydractinia symbiolongicarpus. Toxicon X 2022; 14:100113. [PMID: 35287376 PMCID: PMC8917316 DOI: 10.1016/j.toxcx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cnidarians (jellyfish, hydroids, sea anemones, and corals) possess a unique method for venom production, maintenance, and deployment through a decentralized system composed of different types of venom-filled stinging structures called nematocysts. In many species, nematocyst types are distributed heterogeneously across functionally distinct tissues. This has led to a prediction that different nematocyst types contain specific venom components. The colonial hydrozoan, Hydractinia symbiolongicarpus, is an ideal system to study the functional distribution of nematocyst types and their venoms, given that they display a division of labor through functionally distinct polyps within the colony. Here, we characterized the composition and distribution of nematocysts (cnidome) in the different polyp types and show that the feeding polyp (gastrozooid) has a distinct cnidome compared to the reproductive (gonozooid) and predatory polyp (dactylozooid). We generated a nematocyst-specific reporter line to track nematocyst development (nematogenesis) in H. symbiolongicarpus, and were able to confirm that nematogenesis primarily occurs in the mid-region of the gastrozooid and throughout stolons (tubes of epithelia that connect the polyps in the colony). This reporter line enabled us to isolate a nematocyst-specific lineage of cells for de novo transcriptome assembly, annotate venom-like genes (VLGs) and determine differential expression (DE) across polyp types. We show that a majority of VLGs are upregulated in gastrozooids, consistent with it being the primary site of active nematogenesis. However, despite gastrozooids producing more nematocysts, we found a number of VLGs significantly upregulated in dactylozooids, suggesting that these VLGs may be important for prey-capture. Our transgenic Hydractinia reporter line provides an opportunity to explore the complex interplay between venom composition, nematocyst diversity, and ecological partitioning in a colonial hydrozoan that displays a division of labor. Functionally specific polyp types in Hydractinia symbiolongicarpus have distinct cnidomes. We present a nematocyst-targeted transgenic line for H. symbiolongicarpus, showcasing active areas of nematogenesis. 105 venom-like genes (VLGs) were annotated from an assembled nematocyst-enriched transcriptome. Several VLGs were significantly upregulated in feeding polyps, consistent with being a site of active nematogenesis. Differential expression analysis suggests that different polyp types express distinct combinations of VLGs.
Collapse
|
10
|
Menezes C, Thakur NL. Sea anemone venom: Ecological interactions and bioactive potential. Toxicon 2022; 208:31-46. [DOI: 10.1016/j.toxicon.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
11
|
Kaposi K, Courtney R, Seymour J. Implications of bleaching on cnidarian venom ecology. Toxicon X 2022; 13:100094. [PMID: 35146416 PMCID: PMC8819380 DOI: 10.1016/j.toxcx.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/03/2022] Open
Abstract
Cnidarian bleaching research often focuses on the effects on a cnidarian's physiological health and fitness, whilst little focus has been towards the impacts of these events on their venom ecology. Given the importance of a cnidarian's venom to their survival and the increasing threat of bleaching events, it is important to understand the effects that this threat may have on this important aspect of their ecology as it may have unforeseen impacts on their ability to catch prey and defend themselves. This review aims to explore evidence that suggests that bleaching may impact on each of the key aspects of a cnidarians' venom ecology: cnidae, venom composition, and venom toxicity. Additionally, the resulting energy deficit, compensatory heterotrophic feeding, and increased defensive measures have been highlighted as possible ecological factors driving these changes. Suggestions are also made to guide the success of research in this field into the future, specifically in regards to selecting a study organism, the importance of accurate symbiont and cnidae identification, use of appropriate bleaching methods, determination of bleaching, and animal handling. Ultimately, this review highlights a significant and important gap in our knowledge into how cnidarians are, and will, continue to be impacted by bleaching stress. Information on the effects of bleaching on cnidarian venom ecology is limited. There is evidence to suggest nematocysts, venom composition and venom toxicity may each be impacted by bleaching. Bleaching may result in depleted energy, increased heterotrophy and/or the need for stronger defensive strategies. To fully understand how cnidarians may be impacted by bleaching stress further research in this field is needed. Future studies should consider the model organism and methodologies, thereby minimising indirect confounding effects.
Collapse
|
12
|
Mitchell ML, Hossain MA, Lin F, Pinheiro-Junior EL, Peigneur S, Wai DCC, Delaine C, Blyth AJ, Forbes BE, Tytgat J, Wade JD, Norton RS. Identification, Synthesis, Conformation and Activity of an Insulin-like Peptide from a Sea Anemone. Biomolecules 2021; 11:1785. [PMID: 34944429 PMCID: PMC8698791 DOI: 10.3390/biom11121785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
The role of insulin and insulin-like peptides (ILPs) in vertebrate animals is well studied. Numerous ILPs are also found in invertebrates, although there is uncertainty as to the function and role of many of these peptides. We have identified transcripts with similarity to the insulin family in the tentacle transcriptomes of the sea anemone Oulactis sp. (Actiniaria: Actiniidae). The translated transcripts showed that these insulin-like peptides have highly conserved A- and B-chains among individuals of this species, as well as other Anthozoa. An Oulactis sp. ILP sequence (IlO1_i1) was synthesized using Fmoc solid-phase peptide synthesis of the individual chains, followed by regioselective disulfide bond formation of the intra-A and two interchain disulfide bonds. Bioactivity studies of IlO1_i1 were conducted on human insulin and insulin-like growth factor receptors, and on voltage-gated potassium, sodium, and calcium channels. IlO1_i1 did not bind to the insulin or insulin-like growth factor receptors, but showed weak activity against KV1.2, 1.3, 3.1, and 11.1 (hERG) channels, as well as NaV1.4 channels. Further functional studies are required to determine the role of this peptide in the sea anemone.
Collapse
Affiliation(s)
- Michela L. Mitchell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Sciences Department, Museum Victoria, G.P.O. Box 666, Melbourne, VIC 3001, Australia
- Biodiversity and Geosciences, Queensland Museum, P.O. Box 3000, South Brisbane, QLD 4101, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Feng Lin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
| | - Ernesto L. Pinheiro-Junior
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - Dorothy C. C. Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Carlie Delaine
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Andrew J. Blyth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Ashwood LM, Undheim EAB, Madio B, Hamilton BR, Daly M, Hurwood DA, King GF, Prentis PJ. Venoms for all occasions: The functional toxin profiles of different anatomical regions in sea anemones are related to their ecological function. Mol Ecol 2021; 31:866-883. [PMID: 34837433 DOI: 10.1111/mec.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Microscopy and Microscopy and Microanalysis, University of Queensland, St Lucia, Queensland, Australia
| | - Marymegan Daly
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|