1
|
Ye K, Zhou S, Wu D, Ma D, Yao Y, Yang C, Sun M, Yang S, Fu W, Xin W, Yuan J, Zhuang Z, Yang Y. Molecular Mechanism of Aflatoxin B 1 Synthesis Related AfVerB Regulating the Development, AFB 1 Biosyntheis and Virulence of Aspergillus flavus Mainly Through Its CYP Domain. J Fungi (Basel) 2025; 11:293. [PMID: 40278114 PMCID: PMC12028525 DOI: 10.3390/jof11040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Aspergillus flavus and its secondary metabolites aflatoxins pose a significant threat to the health of humans, animals, and plants. Therefore, there is an urgent need to control A. flavus contamination. AfverB plays a key role in the aflatoxin gene cluster; however, its function and mechanism in fungal development and virulence remain poorly understood. In this study, we constructed afVerB gene deletion mutants (∆afVerB-1 and ∆afVerB-2) and two CYP domain mutants (afVerB∆D1 and afVerB∆D2) through homologous recombination. Phenotype analysis revealed that, via its two CYP domains, AfVerB is deeply involved in fungal morphogenesis and aflatoxin synthesis. Insect and crop colonization models revealed that AfVerB plays a key role in the fungus's ability to infect hosts, and stress experiments discovered that AfVerB plays a significant role in the response to various environmental stresses, which explains why AfVerB is a key factor in fungal infection to some extent. RT-qPCR analysis demonstrated that AfVerB performs its bio-function through corresponding regulatory factors. We ultimately discovered that AfVerB is deeply involved in cell membrane stress stability, thereby participating in the regulation of fungal drug resistance (sensitive to AMB and resistant to VOR in this study). The CYP domain of AfVerB, particularly its second CYP domain, is crucial for the execution of its biological functions. This study elucidated the regulatory mechanisms by which AfVerB regulates fungal pathogenicity and aflatoxin biosynthesis, providing potential strategies for controlling A. flavus and its aflatoxin contamination.
Collapse
Affiliation(s)
- Kangfu Ye
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Song Zhou
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Dongmei Ma
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.M.); (M.S.)
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Minghui Sun
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.M.); (M.S.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China;
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Y.); (S.Z.); (D.W.); (Y.Y.); (C.Y.); (S.Y.); (W.F.)
| |
Collapse
|
2
|
Jia K, Jia Y, Zeng Q, Yan Z, Wang S. Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus. J Fungi (Basel) 2024; 10:650. [PMID: 39330410 PMCID: PMC11433291 DOI: 10.3390/jof10090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yipu Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhua Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoqi Yan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Wei S, Hu C, Zhang Y, Lv Y, Zhang S, Zhai H, Hu Y. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2501-2514. [PMID: 36809388 DOI: 10.1007/s00253-023-12404-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Aspergillus niger produces genotoxic and carcinogenic ochratoxin A (OTA) that severely threatens human and animal health. Transcription factor Azf1 is essential in regulating fungal cell development and primary metabolism. However, its effect and mechanism on secondary metabolism are unclear. Here, we characterized and deleted a Azf1 homolog gene, An15g00120 (AnAzf1), in A. niger, which completely blocked OTA production, and repressed the OTA cluster genes, p450, nrps, hal, and bzip at the transcriptional level. The results indicated that AnAzf1 was a positive regulator of OTA biosynthesis. Transcriptome sequencing results showed that the AnAzf1 deletion significantly upregulated antioxidant genes and downregulated oxidative phosphorylation genes. Enzymes involved in reactive oxygen species (ROS) scavenging, including catalase (CAT) and peroxidase (POD) were increased, and the corresponding ROS levels were decreased. Upregulation of genes (cat, catA, hog1, and gfd) in the MAPK pathway and downregulation of genes in iron homeostasis were associated with decreased ROS levels, linking the altered MAPK pathway and iron homeostasis to lower ROS levels caused by AnAzf1 deletion. Additionally, enzymes including complex I (NADH-ubiquinone oxidoreductase), and complex V (ATP synthase), as well as ATP levels, were significantly decreased, indicating impaired oxidative phosphorylation caused by the AnAzf1-deletion. During lower ROS levels and impaired oxidative phosphorylation, OTA was not produced in ∆AnAzf1. Together, these results strongly suggested that AnAzf1 deletion blocked OTA production in A. niger by a synergistic interference of ROS accumulation and oxidative phosphorylation. KEY POINTS: • AnAzf1 positively regulated OTA biosynthesis in A. niger. • Deletion of AnAzf1 decreased ROS levels and impaired oxidative phosphorylation. • An altered MAPK pathway and iron homeostasis were associated with lower ROS levels.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
4
|
Ferrara M, Perrone G, Gallo A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Qin L, Yang L, Zhao J, Zeng W, Su M, Wang S, Yuan J. GTPase Rac Regulates Conidiation, AFB1 Production and Stress Response in Pathogenic Fungus Aspergillus flavus. Toxins (Basel) 2022; 14:toxins14090581. [PMID: 36136519 PMCID: PMC9503438 DOI: 10.3390/toxins14090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
As a member of the Rho family, Rac plays important roles in many species, including proliferation, differentiation, apoptosis, DNA damage responses, metabolism, angiogenesis, and immunosuppression. In this study, by constructing Rac-deleted mutants in Aspergillus flavus, it was found that the deletion of Rac gene led to the decline of growth and development, conidia production, AFB1 toxin synthesis, and seed infection ability of A. flavus. The deletion of Rac gene also caused the disappearance of A. flavus sclerotium, indicating that Rac is required for sclerotium formation in A. flavus. The sensitivity of Rac-deficient strains responding to cell wall stress and osmotic pressure stress increased when compared to A.flavus WT. The Western blot result showed that mitogen-activated serine/threonine-protein kinase Slt2 and mitogen-activated protein kinase Hog1 proteins were no longer phosphorylated in Rac-deficient strains of A. flavus, showing that Rac may be used as a molecular switch to control the Slt2-MAPK cascade pathway and regulate the osmotic Hog-MAPK cascade pathway in A. flavus in response to external stress. Altogether, these results indicated that Rac was involved in regulating the growth and development, conidia formation and AFB1 synthesis, and response to cell wall stress and osmotic pressure stress in A. flavus.
Collapse
|
6
|
Wei S, Hu C, Nie P, Zhai H, Zhang S, Li N, Lv Y, Hu Y. Insights into the Underlying Mechanism of Ochratoxin A Production in Aspergillus niger CBS 513.88 Using Different Carbon Sources. Toxins (Basel) 2022; 14:toxins14080551. [PMID: 36006213 PMCID: PMC9415321 DOI: 10.3390/toxins14080551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Aspergillus niger produces carcinogenic ochratoxin A (OTA), a serious food safety and human health concern. Here, the ability of A. niger CBS 513.88 to produce OTA using different carbon sources was investigated and the underlying regulatory mechanism was elucidated. The results indicated that 6% sucrose, glucose, and arabinose could trigger OTA biosynthesis and that 1586 differentially expressed genes (DEGs) overlapped compared to a non-inducing nutritional source, peptone. The genes that participated in OTA and its precursor phenylalanine biosynthesis, including pks, p450, nrps, hal, and bzip, were up-regulated, while the genes involved in oxidant detoxification, such as cat and pod, were down-regulated. Correspondingly, the activities of catalase and peroxidase were also decreased. Notably, the novel Gal4-like transcription factor An12g00840 (AnGal4), which is vital in regulating OTA biosynthesis, was identified. Deletion of AnGal4 elevated the OTA yields by 47.65%, 54.60%, and 309.23% using sucrose, glucose, and arabinose as carbon sources, respectively. Additionally, deletion of AnGal4 increased the superoxide anion and H2O2 contents, as well as the sensitivity to H2O2, using the three carbon sources. These results suggest that these three carbon sources repressed AnGal4, leading to the up-regulation of the OTA biosynthetic genes and alteration of cellular redox homeostasis, ultimately triggering OTA biosynthesis in A. niger.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Ping Nie
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Na Li
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
- Correspondence: (Y.L.); (Y.H.)
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
- Correspondence: (Y.L.); (Y.H.)
| |
Collapse
|
7
|
Lv Y, Wang J, Yang H, Li N, Farzaneh M, Wei S, Zhai H, Zhang S, Hu Y. Lysine 2-hydroxyisobutyrylation orchestrates cell development and aflatoxin biosynthesis in Aspergillus flavus. Environ Microbiol 2022; 24:4356-4368. [PMID: 35621059 DOI: 10.1111/1462-2920.16077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib ) is a recently identified post-translational modifications (PTM) that regulates numerous cellular metabolic processes. In pathogenic microorganism, although glycolysis and fungal virulence are regulated by Khib , its potential roles in fungi remains to be elusive. Our preliminary results showed that levels of Khib fluctuate over time in Aspergillus flavus, which frequently contaminates crops and produces carcinogenic aflatoxins. However, the perception of Khib function in A. flavus is limited, especially in mycotoxin-producing strains. Here, we performed a comprehensive analysis of Khib in A. flavus, and 7156 Khib sites were identified in 1473 proteins. Notably, we demonstrated that Khib of AflM, a key enzyme in aflatoxin biosynthesis, affected conidia production and sclerotia formation. Furthermore, aflM deletion impaired aflatoxin biosynthesis, and more importantly, strains in which Khib was mimicked by K to T mutation at K49, K179 and K180 sites showed reduced aflatoxin production compared with wild type and ΔaflM complementation strains. These results indicate that Khib at these sites of AflM negatively regulates aflatoxin biosynthesis in A. flavus. In summary, our study revealed the potential roles of Khib in A. flavus, and particularly shed light on a new way to regulate aflatoxin production via Khib . This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Jing Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Haojie Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Huanchen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|