1
|
Chaki M, Aranda‐Caño L, Begara‐Morales JC, Sánchez‐Calvo B, López‐Jaramillo FJ, Padilla MN, Valderrama R, Pedrajas JR, Barroso JB. Nitro-fatty acids-mediated nitroalkylation modulates fine-tuning catalase antioxidant function during salinity stress in plants. Protein Sci 2025; 34:e70076. [PMID: 40007236 PMCID: PMC11862108 DOI: 10.1002/pro.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/12/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger a powerful antioxidant and defense response against stressful situations, the induction of the heat-shock response (HSR), and they exert their signaling function mainly through a reversible post-translational modification called nitroalkylation. Catalase (CAT) is a key antioxidant enzyme for the control of the hydrogen peroxide (H2O2) levels generated by environmental oxidative stress. The data presented in this study provide novel information on the role of NO2-FAs in modulating the antioxidant activity of catalase 2 (CAT2) during salinity stress in Arabidopsis thaliana. Initially, in vitro treatment with nitro-linolenic acid (NO2-Ln) down-regulated Arabidopsis CAT2 activity, as a consequence of the nitroalkylation of His 156 and His 248, evolutionarily conserved residues with key functional implications for the quaternary structure and hence CAT2 activity. Any effect of NO2-Ln on the heme group or S-nitrosylation of CAT2 was excluded. To further our knowledge of the regulatory mechanism of this antioxidant enzyme by nitroalkylation, the functional modulation of CAT by NO2-FAs was analyzed in 5-day-old Arabidopsis cell suspension cultures subjected to salinity stress. In this situation, the oxidative stress generated caused the nitroalkylation of these residues to disappear through the cleavage of NO2-Ln binding to CAT2, thus restoring CAT2 catalytic activity. Thus, during salinity stress, CAT2 enzymatic activity increased without changes in protein levels. These results highlight the amino acid targets that are susceptible to nitroalkylation and the modulatory effect of this post-translational modification on CAT2 enzymatic activity in vitro and in vivo. These findings underline the regulatory role of nitroalkylation in CAT2 functionality, which is strongly influenced by the redox state thus becoming a new key control mechanism of this antioxidant enzyme in abiotic stress cell response processes.
Collapse
Affiliation(s)
- Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - Lorena Aranda‐Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - Juan C. Begara‐Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - Beatriz Sánchez‐Calvo
- Department of Biochemistry and Biomedical Research Center (CEINBIO), School of MedicineUniversity of the RepublicMontevideoUruguay
- Department of Basic Nutrition, School of NutritionUniversity of the RepublicMontevideoUruguay
| | | | - María N. Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - José Rafael Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental SciencesUniversity Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of JaénJaénSpain
| |
Collapse
|
2
|
Haida M, Khalloufi FE, Essadki Y, Alexandrino DAM, Mugani R, Hejjaj A, Campos A, Vasconcelos V, Carvalho MF, Díez-Quijada L, Cameán AM, Oudra B. Microcystin-degrading bacteria reduce bioaccumulation in Fragaria vulgaris and enhance fruit yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54502-54524. [PMID: 39196325 DOI: 10.1007/s11356-024-34568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In Morocco, red fruit production has thrived, primarily utilizing hydroponic methods to control crops, increase fruit yield and quality, and avoid soil-related problems. However, the irrigation of these expansive hydroponic farms relies heavily on water sourced from dams, many of which are contaminated with Microcystins (MCs). To address this contamination issue, ongoing research is focused on discovering effective and cost-efficient biological solutions for eliminating MCs. In this study, we isolate and identify bacterial strains capable of degrading MCs, evaluate the rate of degradation, and investigate how soil inoculated with these bacteria affects the accumulation of MCs in plant tissue. The partial 16S rRNA analyses of three bacterial sequences were conducted, identifying them through NCBI as follows: Ensifer sp. (B1) isolated from soil, Shinella sp. (B2) from a cyanobacterial bloom, and Stutzerimonas sp. (B3) from water. These bacteria exhibited the ability to degrade MCs, with approximately 34.75%, 73.75%, and 30.1% of the initial concentration (20 µg/L) being removed after a 6-day period for B1, B2, and B3, respectively. Moreover, strawberry plants were cultivated hydroponically in a greenhouse for a duration of 90 days. These plants were subjected to extracts of cyanobacteria containing 10 and 20 µg/L of Microcystins (MC), as well as water from an artificial lake contaminated with MC, both with and without the presence of isolated bacterial strains. Among these strains, Shinella sp. exhibited the highest efficacy in mitigating MC accumulation. Specifically, it resulted in a reduction of approximately 1.159 µg of MC per kilogram of root dry weight, leading to complete elimination in the leaves and fruits. The findings also indicated that the inoculation of perlite with the three MC-degrading bacterial strains significantly enhanced growth, photosynthetic pigments, yield, biochemical constituents, and quality attributes of strawberries (p ≤ 0.05). These promising outcomes suggest the potential of this approach for addressing the adverse impacts of crops irrigated with MC-contaminated water in future agricultural practices.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Diogo A M Alexandrino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal.
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Maria F Carvalho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
3
|
Mohamed ZA, Mostafa Y, Alamri S, Hashem M. Accumulation of microcystin toxin in irrigation water and alfalfa (Medicago sativa) forage plant, and assessing the potential risk to animal health. CHEMOSPHERE 2024; 364:143248. [PMID: 39233291 DOI: 10.1016/j.chemosphere.2024.143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microcystin (MC) toxin produced by cyanobacteria has become a significant concern for societies worldwide. The risk of MC in drinking water has been assessed to human health. Nonetheless, its risk to animal health has not been thoroughly evaluated. This study investigated MCs in irrigation water and alfalfa plant from nearby farmlands. Both irrigation water and alfalfa shoots contained greater MC concentrations (1.8-17.4 μg L-1 and 0.053-0.128 μg g-1) during summer than winter (2.4 μg L-1 and 0.017 μg g-1). These MC concentrations showed a correlation with the predominance of cyanobacteria in the sites, triggering the potential risk of these microorganisms in irrigation waters. Accordingly, there would be a high risk (risk quotient, RQ > 1) during summer and a moderate risk (0.1
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut 71516, Egypt
| |
Collapse
|
4
|
Mohamed ZA, Fathi AA, Mostafa Y, Alamri S, Hashem M, Alrumman S, Basha OR. Microcystin levels in irrigation water and field-vegetable plants, and food safety risk assessment: A case study from Egypt. Toxicon 2024; 247:107846. [PMID: 38964620 DOI: 10.1016/j.toxicon.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 μg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 μg kg-1 fresh weight, FW) followed by spinach (180 μg kg-1 FW), onion (170 μg g-1 FW), Swiss chard (160 μg kg-1 FW) and fava bean (46 μg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 μg kg bw-1 d-1 for adults and 0.11-1.5 μg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 μg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Adel A Fathi
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Sulaiman Alrumman
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Omnia R Basha
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Haida M, El Khalloufi F, Mugani R, Essadki Y, Campos A, Vasconcelos V, Oudra B. Microcystin Contamination in Irrigation Water and Health Risk. Toxins (Basel) 2024; 16:196. [PMID: 38668621 PMCID: PMC11054416 DOI: 10.3390/toxins16040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins. Due to their high chemical stability and low molecular weight, MCs have the potential to accumulate in various parts of plants, thereby increasing health hazards for consumers of agricultural products, which serve as the foundation of the Earth's food chain. MCs can bioaccumulate, migrate, potentially biodegrade, and pose health hazards to humans within terrestrial food systems. This study highlights that MCs from irrigation water reservoirs can bioaccumulate and come into contact with plants, transferring into the food chain. Additionally, it investigates the natural mechanisms that organisms employ for conjugation and the microbial processes involved in MC degradation. To gain a comprehensive understanding of the role of MCs in the terrestrial food chain and to elucidate the specific health risks associated with consuming crops irrigated with water contaminated with these toxins, further research is necessary.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P, 45, Khouribga 25000, Morocco;
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| |
Collapse
|
6
|
Haida M, El Khalloufi F, Tamegart L, Mugani R, Essadki Y, Redouane EM, Azevedo J, Araújo MJ, Campos A, Vasconcelos V, Gamrani H, Oudra B. Tracing the fate of microcystins from irrigation water to food chains: Studies with Fragaria vulgaris and Meriones shawi. Toxicon 2023; 236:107345. [PMID: 37963511 DOI: 10.1016/j.toxicon.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase). The harvested plants (roots and leaves) were then prepared in an aliquot form and used as feed for Meriones shawi. Liquid chromatography-mass spectrometry (LC/MS/MS) was used to measure MC concentrations in plant and animal tissues. The bioaccumulation of MCs was found to be highest in the roots, followed by leaves, fruits, liver, stomach, and fecal matter. The bioaccumulation factor (BAF) was highest in perlite (8.48), followed by roots (5.01), leaves (1.55), stomach (0.87), and fecal matter (1.18), indicating that the parts with high bioaccumulation factor had high translocation of MCs. The transfer of MCs to animal organs was low, and the daily toxin intake of adult consumers of strawberry fruit irrigated with 1, 5, 10, and 20 μg/L MC did not exceed the WHO-recommended limit of 0.04 μg MC-LR/Kg of bw/day. However, fruits from plants irrigated with 10 and 20 μg/L may pose a moderate health risk to children (25 Kg bw), and Meriones' consumption of leaves may pose a significant health risk. After the depuration phase, MC concentration in perlite, roots, leaves, and fruits decreased, indicating that depuration reduced the danger of MC transmission and bioaccumulation. The study also found that glutathione reductase and glutathione S-transferase activity were essential in the depuration of MCs in the tested plants. The findings suggest that legislation regulating the quality of irrigation water in terms of MC concentrations is necessary to prevent detrimental consequences to crops and human exposure.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, AbdelmalekEssaadi University, Tetouan, Morocco; Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Mário Jorge Araújo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
7
|
Towards a Better Quantification of Cyanotoxins in Fruits and Vegetables: Validation and Application of an UHPLC-MS/MS-Based Method on Belgian Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vegetables and fruits can potentially accumulate cyanotoxins after water contaminated with cyanobacteria is used for irrigation. We developed and validated an analytical method to quantify eight microcystin congeners (MCs) and nodularin (NOD) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) in three different matrices. Strawberries, carrots and lettuce are selected as model matrices to represent the fruits/berries, leafy and root vegetables, sequentially. The validation of a UHPLC-MS/MS method in the strawberry matrix is novel. Matrix effects are observed in all three matrices. Our methodology uses matrix-matched calibration curves to compensate for the matrix effect. The implementation of our method on 103 samples, containing nine different sorts of fruits and vegetables from the Belgian market, showed no presence of MCs or NOD. However, the recoveries of our quality controls showed the effectiveness of our method, illustrating that the use of this method in future research or monitoring as well as in official food controls in fruit and vegetable matrices is valid.
Collapse
|
8
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Zerrifi SEA, Campos A, Kasada M, Woodhouse J, Grossart HP, Vasconcelos V, Oudra B. Bacterioplankton Associated with Toxic Cyanobacteria Promote Pisum sativum (Pea) Growth and Nutritional Value through Positive Interactions. Microorganisms 2022; 10:1511. [PMID: 35893569 PMCID: PMC9394358 DOI: 10.3390/microorganisms10081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Research on Plant Growth-Promoting Bacteria (PGPB) has focused much more on rhizospheric bacteria. However, PGPB associated with toxic cyanobacterial bloom (TCB) could enter the rhizosphere through irrigation water, helping plants such as Pisum sativum L. (pea) overcome oxidative stress induced by microcystin (MC) and improve plant growth and nutritional value. This study aimed to isolate bacteria associated with toxic cyanobacteria, test PGPB properties, and inoculate them as a consortium to pea seedlings irrigated with MC to investigate their role in plant protection as well as in improving growth and nutritional value. Two bacterioplankton isolates and one rhizosphere isolate were isolated and purified on a mineral salt medium supplemented with 1000 μg/L MC and identified via their 16S rRNA gene. The mixed strains were inoculated to pea seedlings in pots irrigated with 0, 50, and 100 μg/L MC. We measured the morphological and physiological parameters of pea plants at maturity and evaluated the efficiency of the plant’s enzymatic and non-enzymatic antioxidant responses to assess the role and contribution of PGPB. Both bacterioplankton isolates were identified as Starkeya sp., and the rhizobacterium was identified as Brevundimonas aurantiaca. MC addition significantly (p < 0.05) reduced all the growth parameters of the pea, i.e., total chlorophyll content, leaf quantum yield, stomatal conductance, carotenoids, and polyphenol contents, in an MC concentration-dependent manner, while bacterial presence positively affected all the measured parameters. In the MC treatment, the levels of the pea’s antioxidant traits, including SOD, CAT, POD, PPO, GST, and ascorbic acid, were increased in the sterile pots. In contrast, these levels were reduced with double and triple PGPB addition. Additionally, nutritional values such as sugars, proteins, and minerals (Ca and K) in pea fruits were reduced under MC exposure but increased with PGPB addition. Overall, in the presence of MC, PGPB seem to positively interact with pea plants and thus may constitute a natural alternative for soil fertilization when irrigated with cyanotoxin-contaminated water, increasing the yield and nutritional value of crops.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, P.O. Box 145, Khouribga 25000, Morocco;
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
| | - Minoru Kasada
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| |
Collapse
|