1
|
Chandrasekara U, Mancuso M, Sumner J, Edwards D, Zdenek CN, Fry BG. Sugar-coated survival: N-glycosylation as a unique bearded dragon venom resistance trait within Australian agamid lizards. Comp Biochem Physiol C Toxicol Pharmacol 2024; 282:109929. [PMID: 38670246 DOI: 10.1016/j.cbpc.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
In the ongoing evolutionary arms race between predators and prey, adaptive innovations often trigger a reciprocal response. For instance, the emergence of α-neurotoxins in snake venom has driven prey species targeted by these snakes to evolve sophisticated defense mechanisms. This study zeroes in on the particular motifs within the orthosteric sites of post-synaptic nicotinic acetylcholine receptors (nAChR) that confer resistance to α-neurotoxins, often through structural alterations of nAChR. This research examined Australian agamid lizards, a primary prey group for Australian elapid snakes, which are subject to predatory selection pressures. We previously showed that Pogona vitticeps (Central bearded dragon) was resistant to α-neurotoxic snake venoms through a steric hindrance form resistance evolving within the nAChR orthosteric, specifically through the 187-189NVT motif resulting in the presence of N-glycosylation, with the branching carbohydrate chains impeding the binding by the neurotoxins. This adaptive trait is thought to be a compensatory mechanism for the lizard's limited escape capabilities. Despite the significance of this novel adaptation, the prevalence and evolutionary roots of such venom resistance in Australian agamids have not been thoroughly investigated. To fill this knowledge gap, we undertook a comprehensive sequencing analysis of the nAChR ligand-binding domain across the full taxonomical diversity of Australian agamid species. Our findings reveal that the N-glycosylation resistance mechanism is a trait unique to the Pogona genus and absent in other Australian agamids. This aligns with Pogona's distinctive morphology, which likely increases vulnerability to neurotoxic elapid snakes, thereby increasing selective pressures for resistance. In contrast, biolayer interferometry experiments with death adder (Acanthophis species) venoms did not indicate any resistance-related binding patterns in other agamids, suggesting a lack of similar resistance adaptations, consistent with these lineages either being fast-moving, covered with large defensive spines, or being arboreal. This research not only uncovers a novel α-neurotoxin resistance mechanism in Australian agamids but also highlights the complex dynamics of the predator-prey chemical arms race. It provides a deeper understanding of how evolutionary pressures shape the interactions between venomous snakes and their prey.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Marco Mancuso
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Joanna Sumner
- Museums Victoria Research Institute, GPO Box 666, Melbourne, VIC 3001, Australia.
| | - Dan Edwards
- Natural Sciences, Museum and Art Gallery Northern Territory, 19 Conacher St, The Gardens, Darwin, NT 0801, Australia.
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Chandrasekara U, Broussard EM, Rokyta DR, Fry BG. High-Voltage Toxin'Roll: Electrostatic Charge Repulsion as a Dynamic Venom Resistance Trait in Pythonid Snakes. Toxins (Basel) 2024; 16:176. [PMID: 38668601 PMCID: PMC11053703 DOI: 10.3390/toxins16040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Emilie M. Broussard
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (E.M.B.); (D.R.R.)
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (E.M.B.); (D.R.R.)
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
3
|
Chandrasekara U, Mancuso M, Seneci L, Bourke L, Trembath DF, Sumner J, Zdenek CN, Fry BG. A Russian Doll of Resistance: Nested Gains and Losses of Venom Immunity in Varanid Lizards. Int J Mol Sci 2024; 25:2628. [PMID: 38473875 DOI: 10.3390/ijms25052628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Marco Mancuso
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dane F Trembath
- Herpetology Department, Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia
| | - Joanna Sumner
- Museums Victoria Research Institute, Melbourne, VIC 3001, Australia
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Op den Brouw B, Fernandez-Rojo MA, Charlton T, Fry BG, Ikonomopoulou MP. Malaysian and Chinese King Cobra Venom Cytotoxicity in Melanoma and Neonatal Foreskin Fibroblasts Is Mediated by Age and Geography. Toxins (Basel) 2023; 15:549. [PMID: 37755975 PMCID: PMC10534572 DOI: 10.3390/toxins15090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venoms constitute a complex, rapidly evolving trait, whose composition varies between and within populations depending on geographical location, age and preys (diets). These factors have determined the adaptive evolution for predatory success and link venom heterogeneity with prey specificity. Moreover, understanding the evolutionary drivers of animal venoms has streamlined the biodiscovery of venom-derived compounds as drug candidates in biomedicine and biotechnology. The king cobra (Ophiophagus hannah; Cantor, 1836) is distributed in diverse habitats, forming independent populations, which confer differing scale markings, including between hatchlings and adults. Furthermore, king cobra venoms possess unique cytotoxic properties that are used as a defensive trait, but their toxins may also have utility as promising anticancer-agent candidates. However, the impact of geographical distribution and age on these potential venom applications has been typically neglected. In this study, we hypothesised that ontogenetic venom variation accompanies the morphological distinction between hatchlings and adults. We used non-transformed neonatal foreskin (NFF) fibroblasts to examine and compare the variability of venom cytotoxicity between adult captive breeding pairs from Malaysian and Chinese lineages, along with that of their progeny upon hatching. In parallel, we assessed the anticancer potential of these venoms in human-melanoma-patient-derived cells (MM96L). We found that in a geographical distribution and gender-independent manner, venoms from hatchlings were significantly less cytotoxic than those from adults (NFF; ~Log EC50: 0.5-0.6 vs. 0.2-0.35 mg/mL). This is consistent with neonates occupying a semifossorial habitat, while adults inhabit more above-ground habitats and are therefore more conspicuous to potential predators. We also observed that Malaysian venoms exhibited a slightly higher cytotoxicity than those from the Chinese cobra cohorts (NFF; Log EC50: 0.1-0.3 vs. 0.3-0.4 mg/mL), which is consistent with Malaysian king cobras being more strongly aposematically marked. These variations are therefore suggestive of differential anti-predator strategies associated with the occupation of distinct niches. However, all cobra venoms were similarly cytotoxic in both melanoma cells and fibroblasts, limiting their potential medical applications in their native forms.
Collapse
Affiliation(s)
- Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Manuel A. Fernandez-Rojo
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, E28049 Madrid, Spain;
- Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tom Charlton
- Department of Natural Sciences, Manchester Metropolitan University, All Saints Building, Manchester M15 6BH, UK;
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, E28049 Madrid, Spain
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Mancuso M, Zaman S, Maddock ST, Kamei RG, Salazar-Valenzuela D, Wilkinson M, Roelants K, Fry BG. Resistance Is Not Futile: Widespread Convergent Evolution of Resistance to Alpha-Neurotoxic Snake Venoms in Caecilians (Amphibia: Gymnophiona). Int J Mol Sci 2023; 24:11353. [PMID: 37511112 PMCID: PMC10379402 DOI: 10.3390/ijms241411353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.
Collapse
Affiliation(s)
- Marco Mancuso
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Shabnam Zaman
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Simon T Maddock
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé P.O. Box 1348, Seychelles
| | - Rachunliu G Kamei
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- Amphibians and Reptiles Division, The Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bryan G Fry
- Venom Evolutionary Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|