1
|
Mechaly A, Diamant E, Alcalay R, Ben David A, Dor E, Torgeman A, Barnea A, Girshengorn M, Levin L, Epstein E, Tennenhouse A, Fleishman SJ, Zichel R, Mazor O. Highly Specific Monoclonal Antibody Targeting the Botulinum Neurotoxin Type E Exposed SNAP-25 Neoepitope. Antibodies (Basel) 2022; 11:21. [PMID: 35323195 PMCID: PMC8944829 DOI: 10.3390/antib11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/31/2022] Open
Abstract
Botulinum neurotoxin type E (BoNT/E), the fastest acting toxin of all BoNTs, cleaves the 25 kDa synaptosomal-associated protein (SNAP-25) in motor neurons, leading to flaccid paralysis. The specific detection and quantification of the BoNT/E-cleaved SNAP-25 neoepitope can facilitate the development of cell-based assays for the characterization of anti-BoNT/E antibody preparations. In order to isolate highly specific monoclonal antibodies suitable for the in vitro immuno-detection of the exposed neoepitope, mice and rabbits were immunized with an eight amino acid peptide composed of the C-terminus of the cleaved SNAP-25. The immunized rabbits developed a specific and robust polyclonal antibody response, whereas the immunized mice mostly demonstrated a weak antibody response that could not discriminate between the two forms of SNAP-25. An immune scFv phage-display library was constructed from the immunized rabbits and a panel of antibodies was isolated. The sequence alignment of the isolated clones revealed high similarity between both heavy and light chains with exceptionally short HCDR3 sequences. A chimeric scFv-Fc antibody was further expressed and characterized, exhibiting a selective, ultra-high affinity (pM) towards the SNAP-25 neoepitope. Moreover, this antibody enabled the sensitive detection of cleaved SNAP-25 in BoNT/E treated SiMa cells with no cross reactivity with the intact SNAP-25. Thus, by applying an immunization and selection procedure, we have isolated a novel, specific and high-affinity antibody against the BoNT/E-derived SNAP-25 neoepitope. This novel antibody can be applied in in vitro assays that determine the potency of antitoxin preparations and reduce the use of laboratory animals for these purposes.
Collapse
Affiliation(s)
- Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel;
| | - Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel;
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Meni Girshengorn
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Lilach Levin
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Ariel Tennenhouse
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600001, Israel; (A.T.); (S.J.F.)
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600001, Israel; (A.T.); (S.J.F.)
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel; (E.D.); (A.B.D.); (E.D.); (A.T.); (A.B.); (M.G.); (L.L.); (E.E.); (R.Z.)
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001, Israel;
| |
Collapse
|
2
|
Current Developments in Diagnostic Assays for Laboratory Confirmation and Investigation of Botulism. J Clin Microbiol 2021; 60:e0013920. [PMID: 34586891 DOI: 10.1128/jcm.00139-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of botulinum neurotoxin or isolation of the toxin producing organism is required for the laboratory confirmation of botulism in clinical specimens. In an effort to reduce animal testing required by the gold standard method of botulinum neurotoxin detection, the mouse bioassay, many technologies have been developed to detect and characterize the causative agent of botulism. Recent advancements in these technologies have led to improvements in technical performance of diagnostic assays; however, many emerging assays have not been validated for the detection of all serotypes in complex clinical and environmental matrices. Improvements to culture protocols, endopeptidase-based assays, and a variety of immunological and molecular methods have provided laboratories with a variety of testing options to evaluate and incorporate into their testing algorithms. While significant advances have been made to improve these assays, additional work is necessary to evaluate these methods in various clinical matrices and to establish standardized criteria for data analysis and interpretation.
Collapse
|
3
|
Schenke M, Schjeide BM, Püschel GP, Seeger B. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays. Toxins (Basel) 2020; 12:toxins12050276. [PMID: 32344847 PMCID: PMC7291138 DOI: 10.3390/toxins12050276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins produced by bacteria, which inhibit neurotransmitter release, specifically in their physiological target known as motor neurons (MNs). For the potency assessment of BoNTs produced for treatment in traditional and aesthetic medicine, the mouse lethality assay is still used by the majority of manufacturers, which is ethically questionable in terms of the 3Rs principle. In this study, MNs were differentiated from human induced pluripotent stem cells based on three published protocols. The resulting cell populations were analyzed for their MN yield and their suitability for the potency assessment of BoNTs. MNs produce specific gangliosides and synaptic proteins, which are bound by BoNTs in order to be taken up by receptor-mediated endocytosis, which is followed by cleavage of specific soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins required for neurotransmitter release. The presence of receptors and substrates for all BoNT serotypes was demonstrated in MNs generated in vitro. In particular, the MN differentiation protocol based on Du et al. yielded high numbers of MNs in a short amount of time with high expression of BoNT receptors and targets. The resulting cells are more sensitive to BoNT/A1 than the commonly used neuroblastoma cell line SiMa. MNs are, therefore, an ideal tool for being combined with already established detection methods.
Collapse
Affiliation(s)
- Maren Schenke
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
| | - Brit-Maren Schjeide
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Gerhard P. Püschel
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Bettina Seeger
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
- Correspondence:
| |
Collapse
|
4
|
Lou J, Marks JD. Botulinum Neurotoxins (BoNTs)-Antibody and Vaccine. Toxins (Basel) 2018; 10:toxins10120495. [PMID: 30486254 PMCID: PMC6315911 DOI: 10.3390/toxins10120495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| |
Collapse
|
5
|
An in vitro cell-based potency assay for pharmaceutical type A botulinum antitoxins. Vaccine 2017; 35:7213-7216. [PMID: 29174678 DOI: 10.1016/j.vaccine.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Botulism therapy relies on passive immunization with antitoxin. The mouse neutralization test is the only pharmacopeia assay to measure the potency of antitoxin preparations. Herein, we present an in vitro cell-based assay for the measurement of pharmaceutical type A antitoxin potency. Accuracy, reproducibility and compatibility with the mouse bioassay were demonstrated using different batches of standard antitoxin and toxin preparations. The established assay may substantially reduce the use of laboratory animals in the process of pharmaceutical antitoxin production.
Collapse
|
6
|
Rust A, Doran C, Hart R, Binz T, Stickings P, Sesardic D, Peden AA, Davletov B. A Cell Line for Detection of Botulinum Neurotoxin Type B. Front Pharmacol 2017; 8:796. [PMID: 29170639 PMCID: PMC5684488 DOI: 10.3389/fphar.2017.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) type A and type B are commonly used as biopharmaceutics for neurological diseases, uniquely allowing months-long paralysis of target muscles. Their exquisite neuronal specificity is conferred by a multistep process of binding, internalization, cytosolic escape and cleavage of the neuron-specific proteins, SNAP-25 and vesicle-associated membrane proteins (VAMPs), ultimately to inhibit secretion of neurotransmitters. Currently the mouse lethality bioassay is the only available method for quality control testing of VAMP-cleaving botulinum products. Refined assays for botulinum product testing are urgently needed. Specifically, in vitro replacement assays which can account for all steps of BoNT intoxication are in high demand. Here, we describe a novel SiMa cell-based approach where re-engineering of the VAMP molecule allows detection of all BoNT/B intoxication steps using a luminescent enzymatic reaction with sensitivity comparable to mouse LD50 bioassay. The presented one-step enzyme-linked immunosorbent assay meets 3Rs (replacement, reduction, and refinement of the use of animals) objectives, is user-friendly and will accelerate development of new botulinum drugs. The sensitive enzymatic reporter cell line could also be adapted for the detection of toxin activity during the manufacture of botulinum and tetanus vaccines.
Collapse
Affiliation(s)
- Aleksander Rust
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ciara Doran
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosalyn Hart
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Paul Stickings
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare Product Regulatory Agency, Potters Bar, United Kingdom
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare Product Regulatory Agency, Potters Bar, United Kingdom
| | - Andrew A. Peden
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|