1
|
Muhammed Hassan G, Zuhair Ali H, Muhammed Hussein W. Evaluation of IL-8, nitric oxide and macrophage inhibitory factor as clinical circulatory markers in patients with cutaneous leishmaniasis, before and during sodium stibogluconate treatment. Cytokine 2024; 173:156450. [PMID: 37988922 DOI: 10.1016/j.cyto.2023.156450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The clinical spectrum of cutaneous leishmaniasis (CL), an intracellular parasitic pathogen, ranges from a single sore healing to chronic crusty lesions with a manifestation of treatment resistance. The complicated interaction between Leishmania bodies and the early immune response, including innate and adaptive mechanisms, determines the evolution of nodules. This study examined the levels of the chemoattractant interleukin 8 (IL-8), pro-inflammatory nitric oxide (NO), and immunoregulatory macrophage inhibitory factor (MIF) in the serum of subjects recently diagnosed with cutaneous leishmaniasis, in parallel with patients being monitored during consecutive sodium stibogluconate (Pentostam) treatment. A total of 161 serum samples of newly diagnosed individuals and patients undergoing pentostam injections were collected form an endemic area of Diyala, east central of Iraq. Sandwich ELISA was used to measure the level of IL-8, NO and MIF in the studied groups. Results of circulatory markers levels showed a considerable difference in all groups, with IL-8 being exceptionally higher in the first two groups of pretreated and dose-1 (191.5, 273.64) pg/ml respectively, while NO was found to be lower than in control subjects, particularly in the pretreated group (12.08 µmol/L) and MIF level was significantly higher in the pretreated group, which was (7.18 pg/ml). These findings can provide insights for distinction of disease phase and monitoring treatment efficacy along consecutive dosages, particularly in populations where CL is endemic.
Collapse
Affiliation(s)
- Ghuffran Muhammed Hassan
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq
| | - Hayder Zuhair Ali
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq.
| | | |
Collapse
|
2
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol 2023; 13:1052478. [PMID: 36817103 PMCID: PMC9932337 DOI: 10.3389/fmicb.2022.1052478] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
Leishmaniasis, one of the most neglected tropical diseases (NTDs), is the third most important vector-borne disease worldwide. This disease has a global impact and severity of the infection and is greatest in the Middle East. The agent of infection is a protozoan parasite of the genus, Leishmania, and is generally transmitted by blood-sucking female sandflies. In humans, there are three clinical forms of infection: (1) cutaneous (CL), (2) mucocutaneous (ML), and (3) visceral leishmaniasis (VL). This review aims to discuss the current epidemiological status of leishmaniasis in Saudi Arabia, Iraq, Syria, and Yemen with a consideration of treatment options. The elevated risk of leishmaniasis is influenced by the transmission of the disease across endemic countries into neighboring non-infected regions.
Collapse
Affiliation(s)
| | - David R. Harris
- Department of Biology, Tuskegee University, Tuskegee, AL, United States
| | | | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | - Todd Young
- Department of Biology, Howard University, Washington, DC, United States
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington, DC, United States
| |
Collapse
|
4
|
Sui Z, Song X, Wu Y, Hou R, Liu J, Zhao B, Liang Z, Chen J, Zhang L, Zhang Y. The cytotoxicity of PM 2.5 and its effect on the secretome of normal human bronchial epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75966-75977. [PMID: 35665889 DOI: 10.1007/s11356-022-20726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) induced various adverse health effects, such as metabolic syndrome, systemic inflammation, and respiratory disease. Many works have studied the effects of PM2.5 exposure on cells through intracellular proteomics analyses. However, changes of the extracellular proteome under PM2.5 exposure and its correlation with PM2.5-induced cytotoxicity still remain unclear. Herein, the cytotoxicity of PM2.5 on normal human bronchial epithelia cells (BEAS-2B cells) was evaluated, and the secretome profile of BEAS-2B cells before and after PM2.5 exposure was investigated. A total of 83 proteins (58 upregulated and 25 downregulated) were differentially expressed in extracellular space after PM2.5 treatment. Notably, we found that PM2.5 promoted the release of several pro-apoptotic factors and induced dysregulated secretion of extracellular matrix (ECM) constituents, showing that the abnormal extracellular environment attributed to PM2.5-induced cell damage. This study provided a secretome data for the deep understanding of the molecular mechanism underlying PM2.5-caused human bronchial epithelia cell damage.
Collapse
Affiliation(s)
- Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaoyao Song
- Environmental Assessment and Analysis Group, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yujie Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiping Chen
- Environmental Assessment and Analysis Group, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
5
|
Margaroni M, Agallou M, Vasilakaki A, Karagkouni D, Skoufos G, Hatzigeorgiou AG, Karagouni E. Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms 2022; 10:microorganisms10071271. [PMID: 35888991 PMCID: PMC9322131 DOI: 10.3390/microorganisms10071271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell population orchestrating immune responses against several diseases, including leishmaniasis, by bridging innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host–pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double-sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC-T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs-Leishmania interplay and eventually disease establishment.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Maria Agallou
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Athina Vasilakaki
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
- Correspondence: ; Tel.: +30-21-0647-8826
| |
Collapse
|
6
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
7
|
Yu J, Zhou Y, Ding J, Zhang D, Yu C, Huang H. Characteristics and possible mechanisms of metabolic disorder in overweight women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:970733. [PMID: 36714563 PMCID: PMC9878688 DOI: 10.3389/fendo.2022.970733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a kind of endocrine and metabolic disorder, disturbing the females of reproductive age. Here, we aimed to investigate the metabolic characteristics of overweight women with PCOS and analyze the possible mechanisms. METHODS We conducted a cross-sectional study on 947 patients with PCOS, who were classified according to body mass index (BMI) as overweight (BMI ≥ 24 kg/m2) or non-overweight (BMI ≤ 23.9 kg/m2). The clinical symptoms, endocrine features, metabolic status, and inflammatory levels of the patients were comprehensively assessed and compared between the patients of the two groups. Additionally, a predictive study on the correlation between inflammation and metabolism was performed using STRING and Cytoscape software, and the possible mechanisms of metabolic disorders involved in the overweight PCOS were preliminarily explored. RESULTS Overweight PCOS was associated with increased average age, waist-to-hip ratio, and the incidence of acanthosis nigricans. These patients were susceptible to familial hypertension and diabetes, and exhibited evident characteristics of low levels of luteinizing hormone (LH) and the ratio of LH to follicle-stimulating hormone, and were more inclined to insulin resistance (IR). Furthermore, overweight PCOS presented with a chronic low-grade inflammation state with increased levels of inflammatory cytokines complement components C5/C5α, CXCL12/SDF-1, MIF, and Serpin E1/PAI-1 evidently compared with those in non-overweight PCOS. Pearson analysis showed that these inflammatory cytokines were directly or indirectly correlated with IR. The STRING and Cytoscape network analysis predicted that inflammatory cytokines CXCL12/SDF-1, Serpin E1/PAI-1 and MIF might be crucial for inducing IR in overweight PCOS women through various biological functions and signal transductions including the JAK-STAT cascade, ATP biosynthesis, and HIF-1 signaling. CONCLUSIONS Overweight patients with PCOS are prone to low gonadal levels, IR, and chronic low-grade inflammation. Inflammatory cytokines CXCL12/SDF-1, Serpin E1/PAI-1and MIF might lead to IR through multiple biological functions and signal transductions in overweight PCOS.
Collapse
Affiliation(s)
- Jin Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yulai Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Danying Zhang
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Hefeng Huang, ; Chaoqin Yu,
| | - Hefeng Huang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- *Correspondence: Hefeng Huang, ; Chaoqin Yu,
| |
Collapse
|
8
|
Macrophage migration inhibitory factor in Nodding syndrome. PLoS Negl Trop Dis 2021; 15:e0009821. [PMID: 34662363 PMCID: PMC8553141 DOI: 10.1371/journal.pntd.0009821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Nodding syndrome (NS) is a catastrophic and enigmatic childhood epilepsy, accompanied by multiple neurological impairments and neuroinflammation. Of all the infectious, environmental and psychological factors associated with NS, the major culprit is Onchocerca Volvulus (Ov)-a parasitic worm transmitted to human by blackflies. NS seems to be an 'Autoimmune Epilepsy' in light of the recent findings of deleterious autoimmune antibodies to Glutamate receptors and to Leiomodin-I in NS patients. Moreover, we recently found immunogenetic fingerprints in HLA peptide-binding grooves associate with protection or susceptibility to NS. Macrophage migration inhibitory factor (MIF) is an immune-regulatory cytokine playing a central role in modulating innate and adaptive immunity. MIF is also involved in various pathologies: infectious, autoimmune and neurodegenerative diseases, epilepsy and others. Herein, two functional polymorphisms in the MIF gene, a -794 CATT5-8 microsatellite repeat and a -173 G/C single-nucleotide polymorphism, were assessed in 49 NS patients and 51 healthy controls from South Sudan. We also measured MIF plasma levels in established NS patients and healthy controls. We discovered that the frequency of the high-expression MIF -173C containing genotype was significantly lower in NS patients compared to healthy controls. Interestingly however, MIF plasma levels were significantly elevated in NS patients than in healthy controls. We further demonstrated that the HLA protective and susceptibility associations are dominant over the MIF association with NS. Our findings suggest that MIF might have a dual role in NS. Genetically controlled high-expression MIF genotype is associated with disease protection. However, elevated MIF in the plasma may contribute to the detrimental autoimmunity, neuroinflammation and epilepsy.
Collapse
|
9
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
10
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
11
|
Mas A, Martínez-Rodrigo A, Orden JA, Molina R, Jiménez M, Jiménez MÁ, Carrión J, Domínguez-Bernal G. Properties of virulence emergence of Leishmania infantum isolates from Phlebotomus perniciosus collected during the human leishmaniosis outbreak in Madrid, Spain. Hepatic histopathology and immunological parameters as virulence markers in the mouse model. Transbound Emerg Dis 2020; 68:704-714. [PMID: 32668083 DOI: 10.1111/tbed.13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Recent anthropic activity related to the construction of the Bosquesur Green Park in a large urban setting in Madrid (Spain) has resulted in the largest reported community outbreak of human leishmaniosis in Europe. Previous phylogenetic and molecular-typing studies of parasite isolates have implicated the Leishmania infantum ITS-Lombardi genotype in this outbreak. In an unusual scenario, visceral leishmaniosis (VL) is affecting a significant number of individuals, suggesting that an increase in parasite virulence has occurred. In this work, using an in vivo BALB/c model of VL, we aimed to investigate the properties of emergent virulence of the L. infantum POL2FL7 and BOS1FL1 isolates obtained from Phlebotomus perniciosus collected in the outbreak area and compare them with those of the well-characterized strain BCN150 MON-1 isolated from a dog. The P. perniciosus specimens were collected during an entomological survey conducted in the transmission season of 2012. We observed a range of virulence phenotypes from moderately to highly aggressive after 5 weeks of infection. IV challenge of mice with outbreak isolates from sand flies induced higher splenic and liver parasite burdens, higher serological titres of specific anti-Leishmania antibodies and impaired capacities to control infection, as revealed by the arginine metabolism and low ratios of Th1/Th2 cytokine profiles analysed, compared with the corresponding measures evaluated in mice infected with the BCN150 strain. The BOS1FL1 isolate showed the highest degree of virulence among the isolates, superior to that of POL2FL7, as evidenced by the analysed biomarkers and the histopathological severity of liver lesions. These results provide insight into how L. infantum isolates from sand flies collected in the outbreak area have been able to affect not only immunosuppressed patients but also middle-aged people with normal immunocompetence in the largest human VL outbreak in Europe.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Orden
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Molina
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Maribel Jiménez
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Ángeles Jiménez
- Servicio de Anatomía Patológica, Facultad de Veterinaria, Hospital Clínico Veterinario, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Carrión
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|