1
|
Link EK, Tscherne A, Sutter G, Smith ER, Gurwith M, Chen RT, Volz A. A Brighton collaboration standardized template with key considerations for a benefit/risk assessment for a viral vector vaccine based on a non-replicating modified vaccinia virus Ankara viral vector. Vaccine 2025; 43:126521. [PMID: 39612556 DOI: 10.1016/j.vaccine.2024.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript provides an overview of Modified Vaccinia virus Ankara (MVA)-vectored vaccines and reviews molecular and biological key features of this platform. In particular, this review aims to provide fundamental information about the promising candidate vaccine MVA-MERS-S which has been evaluated successfully in different preclinical animal models and has undergone clinical testing including a phase Ib study involving more than 170 participants. Infectious diseases continue to be a major cause of human death worldwide. In this context, emerging zoonotic infectious diseases pose a particular challenge for public health systems. In the last two decades, three different respiratory coronaviruses, including the Middle East respiratory syndrome Coronavirus (MERS-CoV) have emerged. For many years, safe and efficacious vaccines have been a major tool to combat infectious diseases. Here, we report on a promising candidate vaccine (MVA-MERS-S) against MERS-CoV based on MVA. Upon application, MVA-MERS-S has been well tolerated and immunogenic, inducing both, cellular and humoral immune responses in different animal models and humans. We demonstrate that the MVA vector platform, with the example of MVA-MERS-S, is a viable and effective tool for producing safe, immunogenic, and efficient vaccines against emerging infectious diseases.
Collapse
Affiliation(s)
- Ellen K Link
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Alina Tscherne
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Gerd Sutter
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Emily R Smith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Marc Gurwith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Asisa Volz
- University of Veterinary Medicine Hannover, Institute of Virology, Hannover, Germany
| |
Collapse
|
2
|
A DNA Prime and MVA Boost Strategy Provides a Robust Immunity against Infectious Bronchitis Virus in Chickens. Vaccines (Basel) 2023; 11:vaccines11020302. [PMID: 36851180 PMCID: PMC9962218 DOI: 10.3390/vaccines11020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious bronchitis (IB) is an acute respiratory disease of chickens caused by the avian coronavirus Infectious Bronchitis Virus (IBV). Modified Live Virus (MLV) vaccines used commercially can revert to virulence in the field, recombine with circulating serotypes, and cause tissue damage in vaccinated birds. Previously, we showed that a mucosal adjuvant system, QuilA-loaded Chitosan (QAC) nanoparticles encapsulating plasmid vaccine encoding for IBV nucleocapsid (N), is protective against IBV. Herein, we report a heterologous vaccination strategy against IBV, where QAC-encapsulated plasmid immunization is followed by Modified Vaccinia Ankara (MVA) immunization, both expressing the same IBV-N antigen. This strategy led to the initiation of robust T-cell responses. Birds immunized with the heterologous vaccine strategy had reduced clinical severity and >two-fold reduction in viral burden in lachrymal fluid and tracheal swabs post-challenge compared to priming and boosting with the MVA-vectored vaccine alone. The outcomes of this study indicate that the heterologous vaccine platform is more immunogenic and protective than a homologous MVA prime/boost vaccination strategy.
Collapse
|
3
|
Merckx G, Tay H, Lo Monaco M, van Zandvoort M, De Spiegelaere W, Lambrichts I, Bronckaers A. Chorioallantoic Membrane Assay as Model for Angiogenesis in Tissue Engineering: Focus on Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:519-539. [PMID: 32220219 DOI: 10.1089/ten.teb.2020.0048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering aims to structurally and functionally regenerate damaged tissues, which requires the formation of new blood vessels that supply oxygen and nutrients by the process of angiogenesis. Stem cells are a promising tool in regenerative medicine due to their combined differentiation and paracrine angiogenic capacities. The study of their proangiogenic properties and associated potential for tissue regeneration requires complex in vivo models comprising all steps of the angiogenic process. The highly vascularized extraembryonic chorioallantoic membrane (CAM) of fertilized chicken eggs offers a simple, easy accessible, and cheap angiogenic screening tool compared to other animal models. Although the CAM assay was initially primarily performed for evaluation of tumor growth and metastasis, stem cell studies using this model are increasing. In this review, a detailed summary of angiogenic observations of different mesenchymal, cardiac, and endothelial stem cell types and derivatives in the CAM model is presented. Moreover, we focus on the variation in experimental setup, including the benefits and limitations of in ovo and ex ovo protocols, diverse biological and synthetic scaffolds, imaging techniques, and outcome measures of neovascularization. Finally, advantages and disadvantages of the CAM assay as a model for angiogenesis in tissue engineering in comparison with alternative in vivo animal models are described. Impact statement The chorioallantoic membrane (CAM) assay is an easy and cheap screening tool for the angiogenic properties of stem cells and their associated potential in the tissue engineering field. This review offers an overview of all published angiogenic studies of stem cells using this model, with emphasis on the variation in used experimental timeline, culture protocol (in ovo vs. ex ovo), stem cell type (derivatives), scaffolds, and outcome measures of vascularization. The purpose of this overview is to aid tissue engineering researchers to determine the ideal CAM experimental setup based on their specific study goals.
Collapse
Affiliation(s)
- Greet Merckx
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Melissa Lo Monaco
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Department of Veterinary Medicine, Faculty of Sciences, Integrated Veterinary Research Unit-Namur Research Institute for Life Science (IVRU-NARILIS), University of Namur, Namur, Belgium
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases CARIM and School for Oncology and Development GROW, Maastricht University, Maastricht, the Netherlands
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|