1
|
de Moya-Ruiz C, Ferriol I, Gómez P. The Temporal Order of Mixed Viral Infections Matters: Common Events That Are Neglected in Plant Viral Diseases. Viruses 2024; 16:1954. [PMID: 39772260 PMCID: PMC11680185 DOI: 10.3390/v16121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence. This underscores the need for a more comprehensive understanding of how the order of virus arrival to the host can impact plant disease dynamics. From this perspective, we reviewed the current evidence regarding the impact of mixed infections within the framework of simultaneous and sequential infections in plants, considering the mode of viral transmission. We also examined how the temporal order of mixed infections could affect the dynamics of viral populations and present a case study of two aphid-transmitted viruses infecting melon plants, suggesting that the order of virus arrival significantly affects viral load and disease outcomes. Finally, we anticipate future research that reconciles molecular epidemiology and evolutionary ecology, underlining the importance of biotic interactions in shaping viral epidemiology and plant disease dynamics in agroecosystems.
Collapse
Affiliation(s)
- Celia de Moya-Ruiz
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| | | | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| |
Collapse
|
2
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Wang D, Fu S, Wu H, Cao M, Liu L, Zhou X, Wu J. Discovery and Genomic Function of a Novel Rice Dwarf-Associated Bunya-like Virus. Viruses 2022; 14:v14061183. [PMID: 35746655 PMCID: PMC9228739 DOI: 10.3390/v14061183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/03/2023] Open
Abstract
Bunyaviruses cause diseases in vertebrates, arthropods, and plants. Here, we used high-throughput RNA-seq to identify a bunya-like virus in rice plants showing the dwarfing symptom, which was tentatively named rice dwarf-associated bunya-like virus (RDaBV). The RDaBV genome consists of L, M, and S segments. The L segment has 6562 nt, and encodes an RdRp with a conserved Bunya_RdRp super family domain. The M segment has 1667 nt and encodes a nonstructural protein (NS). The complementary strand of the 1120 nt S segment encodes a nucleocapsid protein (N), while its viral strand encodes a small nonstructural protein (NSs). The amino acid (aa) sequence identities of RdRp, NS, and N between RDaBV and viruses from the family Discoviridae were the highest. Surprisingly, the RDaBV NSs protein did not match any viral proteins. Phylogenetic analysis based on RdRp indicated that RDaBV is evolutionarily close to viruses in the family Discoviridae. The PVX-expressed system indicated that RDaBV N and NS may be symptom determinants of RDaBV. Our movement complementation and callose staining experiment results confirmed that RDaBV NSs is a viral movement protein in plants, while an agro-infiltration experiment found that RDaBV NS is an RNA silencing suppressor. Thus, we determined that RDaBV is a novel rice-infecting bunya-like virus.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.W.); (S.F.); (H.W.)
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.W.); (S.F.); (H.W.)
| | - Hongyue Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.W.); (S.F.); (H.W.)
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China;
| | - Li Liu
- The Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China;
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.W.); (S.F.); (H.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (X.Z.); (J.W.)
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.W.); (S.F.); (H.W.)
- Correspondence: (X.Z.); (J.W.)
| |
Collapse
|
4
|
Gao X, Jia ZQ, Tao HZ, Xu Y, Li YZ, Liu YT. Use of deep sequencing to profile small RNAs derived from tomato spotted wilt orthotospovirus and hippeastrum chlorotic ringspot orthotospovirus in infected Capsicum annuum. Virus Res 2021; 309:198648. [PMID: 34910964 DOI: 10.1016/j.virusres.2021.198648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Virus-derived small RNAs are one of the key factors of RNA silencing in plant defence against viruses. We obtained virus-derived small interfering RNA profiles from Tomato spotted wilt orthotospovirus and Hippeastrum chlorotic ringspot orthotospovirus infected Capsicum annuum XX19 and XY11 by deep sequencing one day after inoculation. The vsiRNAs data were mapped to the TSWV and HCRV genomes, and the results showed that the vsiRNAs measured 19-24 nucleotides in length. Most of the vsiRNAs were mapped to the S segment of the viral genome. For XX19 and XY11 infected with HCRV, the distribution range of vsiRNAs in S RNA was 52.06-55.20%, while for XX19 and XY11 infected with TSWV, the distribution range of vsiRNAs in S RNA was 87.76-89.07%. The first base at the 5' end of the siRNA from TSWV and HCRV was primarily biased towards A, U, or C. Compared with mock-inoculated XX19 and XY11, the expression level of CaRDR1 was upregulated in TSWV- and HCRV-inoculated XX19 and XY11. CaAGO2 and CaAGO5 were upregulated in XY11 against HCRV infection, and CaRDR2 was downregulated in TSWV-infected XY11 and XX19. The profile of HCRV and TSWV vsiRNA verified in this study could be useful for selecting key vsiRNA such as those in disease-resistant varieties by artificially synthesizing amiRNA.
Collapse
Affiliation(s)
- Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhi-Qiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Zheng Tao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China; School of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Ye Xu
- College of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ting Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Metatranscriptomic Sequencing Suggests the Presence of Novel RNA Viruses in Rice Transmitted by Brown Planthopper. Viruses 2021; 13:v13122464. [PMID: 34960733 PMCID: PMC8708968 DOI: 10.3390/v13122464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Viral pathogens are a major threat to stable crop production. Using a backcross strategy, we find that integrating a dominant brown planthopper (BPH) resistance gene Bph3 into a high-yield and BPH-susceptible indica rice variety significantly enhances BPH resistance. However, when Bph3-carrying backcross lines are infested with BPH, these BPH-resistant lines exhibit sterile characteristics, displaying panicle enclosure and failure of seed production at their mature stage. As we suspected, BPH-mediated viral infections could cause the observed sterile symptoms, and we characterized rice-infecting viruses using deep metatranscriptomic sequencing. Our analyses revealed eight novel virus species and five known viruses, including a highly divergent virus clustered within a currently unclassified family. Additionally, we characterized rice plant antiviral responses using small RNA sequencing. The results revealed abundant virus-derived small interfering RNAs in sterile rice plants, providing evidence for Dicer-like and Argonaute-mediated immune responses in rice plants. Together, our results provide insights into the diversity of viruses in rice plants, and our findings suggest that multiple virus infections occur in rice plants.
Collapse
|
6
|
Zhou S, Zhao Y, Liang Z, Wu R, Chen B, Zhang T, Yang X, Zhou G. Resistance Evaluation of Dominant Varieties against Southern Rice Black-Streaked Dwarf Virus in Southern China. Viruses 2021; 13:v13081501. [PMID: 34452366 PMCID: PMC8402741 DOI: 10.3390/v13081501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a Fijivirus in the Reoviridae family, is transmitted by the white-backed planthopper (Sogatella furcifera, WBPH), a long-distance migratory insect, and presents a serious threat to rice production in Asia. It was first discovered in China’s Guangdong Province in 2001 and has been endemic in the south of China and north of Vietnam for two decades, with serious outbreaks in 2009, 2010, and 2017. In this study, we evaluated the resistance of 10 dominant rice varieties from southern China, where the virus overwinters and accumulates as a source of early spring reinfection, against this virus by artificial inoculation. The results showed that in all tested varieties there was no immune resistance, but there were differences in the infection rate, with incidence rates from 21% to 90.7%, and in symptom severity, with plant weight loss from 66.71% to 91.20% and height loss from 34.1% to 65.06%. Additionally, and valuably, the virus titer and the insect vector virus acquisition potency from diseased plants were significantly different among the varieties: an over sixfold difference was determined between resistant and susceptible varieties, and there was a positive correlation between virus accumulation and insect vector virus acquisition. The results can provide a basis for the selection of rice varieties in southern China to reduce the damage of SRBSDV in this area and to minimize the reinfection source and epidemics of the virus in other rice-growing areas.
Collapse
|
7
|
Sun F, Hu P, Wang W, Lan Y, Du L, Zhou Y, Zhou T. Rice Stripe Virus Coat Protein-Mediated Virus Resistance Is Associated With RNA Silencing in Arabidopsis. Front Microbiol 2020; 11:591619. [PMID: 33281789 PMCID: PMC7691420 DOI: 10.3389/fmicb.2020.591619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Rice stripe virus (RSV) causes rice stripe disease, which is one of the most serious rice diseases in eastern Asian countries. It has been shown that overexpression of RSV coat protein (CP) in rice plants enhances resistance against virus infection. However, the detailed mechanism underlying RSV CP-mediated virus resistance remains to be determined. In this study, we show that both translatable and non-translatable RSV CP transgenic Arabidopsis plants exhibited immunity to virus infection. By using deep sequencing analysis, transgene-derived small interfering RNAs (t-siRNAs) from non-translatable CP transgenic plants and virus-derived small interfering RNAs (vsiRNAs) mapping in the CP region from RSV-infected wild-type plants showed similar sequence distribution patterns, except for a significant increase in the abundance of t-siRNA reads compared with that of CP-derived vsiRNAs. To further test the correlation of t-siRNAs with RSV immunity, we developed RSV CP transgenic Arabidopsis plants in an siRNA-deficient dcl2/3/4 mutant background, and these CP transgenic plants showed the same sensitivity to RSV infection as non-transgenic plants. Together, our data indicate that the expression of RSV CP protein from a transgene is not a prerequisite for virus resistance and RSV CP-mediated resistance is mostly associated with the RNA silencing mechanism in Arabidopsis plants.
Collapse
Affiliation(s)
- Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peng Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Shidore T, Zuverza-Mena N, da Silva W. Small RNA profiling analysis of two recombinant strains of potato virus Y in infected tobacco plants. Virus Res 2020; 288:198125. [PMID: 32835742 DOI: 10.1016/j.virusres.2020.198125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/15/2023]
Abstract
Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.g., potato, tobacco, tomato, and pepper. We analyzed and characterized vsiRNAs derived from Nicotiana tabacum cv. Samsun infected with two recombinant PVY strains, N-Wi and NTN. We observed that the average percentage of vsiRNAs derived from plants infected with N-Wi was higher than from plants infected with NTN, indicating that N-Wi invokes a stronger host response than NTN in tobacco. The size distribution pattern and polarity of vsiRNAs were similar between both virus strains with the 21 and 22 nucleotide (nt) vsiRNA classes as most predominant and the sense/antisense vsiRNAs ratio nearly equal in the 20-24 nt class. However, the percentage of sense vsiRNAs was significantly higher in the 25-26 nt long vsiRNAs. Distinct vsiRNA hotspots, identifying highly abundant reads of different unique vsiRNA sequences, were observed in both viral genomes. Previous studies found an A or U bias at the 5' terminal nucleotide position of 21 nt vsiRNAs; in contrast, our analysis revealed a C and U nucleotide bias. This study provides insights that will help further elucidate differential processing of vsiRNAs in plant antiviral defense.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven CT 06511, United States
| | - Washington da Silva
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| |
Collapse
|
9
|
Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection. Curr Biol 2020; 30:4837-4845.e5. [PMID: 33035486 DOI: 10.1016/j.cub.2020.09.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.
Collapse
|