1
|
An H, Yu X, Li J, Shi F, Liu Y, Shu M, Li Z, Li X, Li W, Chen J. Interleukin-2 enhancer binding factor 2 negatively regulates the replication of duck hepatitis A virus type 1 by disrupting the RNA-dependent RNA polymerase activity of 3D polymerase. Vet Res 2024; 55:40. [PMID: 38532469 DOI: 10.1186/s13567-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
The interaction between viral components and cellular proteins plays a crucial role in viral replication. In a previous study, we showed that the 3'-untranslated region (3'-UTR) is an essential element for the replication of duck hepatitis A virus type 1 (DHAV-1). However, the underlying mechanism is still unclear. To gain a deeper understanding of this mechanism, we used an RNA pull-down and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay to identify new host factors that interact with the 3'-UTR. We selected interleukin-2 enhancer binding factor 2 (ILF2) for further analysis. We showed that ILF2 interacts specifically with both the 3'-UTR and the 3D polymerase (3Dpol) of DHAV-1 through in vitro RNA pull-down and co-immunoprecipitation assays, respectively. We showed that ILF2 negatively regulates viral replication in duck embryo fibroblasts (DEFs), and that its overexpression in DEFs markedly suppresses DHAV-1 replication. Conversely, ILF2 silencing resulted in a significant increase in viral replication. In addition, the RNA-dependent RNA polymerase (RdRP) activity of 3Dpol facilitated viral replication by enhancing viral RNA translation efficiency, whereas ILF2 disrupted the role of RdRP in viral RNA translation efficiency to suppress DHAV-1 replication. At last, DHAV-1 replication markedly suppressed the expression of ILF2 in DEFs, duck embryo hepatocytes, and different tissues of 1 day-old ducklings. A negative correlation was observed between ILF2 expression and the viral load in primary cells and different organs of young ducklings, suggesting that ILF2 may affect the viral load both in vitro and in vivo.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Xiaoli Yu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Jing Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Fuyan Shi
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Zihan Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China.
| |
Collapse
|
2
|
Qin L, Rao T, Li X, Chen H, Qian P. DnaJA2 interacts with Japanese encephalitis virus NS3 via its C-terminal to promote viral infection. Virus Res 2023; 336:199210. [PMID: 37633595 PMCID: PMC10485146 DOI: 10.1016/j.virusres.2023.199210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Numerous studies have documented that the interaction of viral and cellular proteins is essential in the viral life cycle. In our previous study, to screen cellular proteins that take part in the life cycle of JEV, cellular proteins that interacted with JEV NS3 were identified by Co-immunoprecipitation coupled with mass spectrometry analysis (Co-IP-MS), the results showed that ILF2, DnaJA1, DnaJA2, CKB, TUFM, and PABPC1 that putatively interact with NS3. Another candidate protein, DnaJA2, which interacted with JEV NS3 protein, was selected for further study. Overexpression of DnaJA2 increased JEV infection. Conversely, the knockdown of DnaJA2 suppressed JEV infection. Furthermore, DnaJA2 interacted with NS5 besides NS3 and colocalized with viral dsRNA. Additionally, the level of viral NS3 protein expression was higher in cells overexpressing DnaJA2 than in cells with empty vector expression, whereas DnaJA2 knockdown resulted in NS3 protein degradation, which was subsequently restored by MG132 treatment. Further analysis revealed that the C-terminal of DnaJA2 was a critical domain for interaction with NS3 and promoted JEV infection. Collectively, our study identified DnaJA2 as an essential host factor required for JEV infection, potentially representing a novel therapeutic target for the development of antiviral therapies against JEV.
Collapse
Affiliation(s)
- Liuxing Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingting Rao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Hu F, Wang Y, Hu J, Bao Z, Wang M. Comparative study of the impact of dietary supplementation with different types of CpG oligodeoxynucleotides (CpG ODNs) on enhancing intestinal microbiota diversity, antioxidant capacity, and immune-related gene expression profiles in Pacific white shrimp ( Litopenaeus vannamei). Front Immunol 2023; 14:1190590. [PMID: 37180130 PMCID: PMC10174297 DOI: 10.3389/fimmu.2023.1190590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
The CpG oligodeoxynucleotides (CpG ODNs) reportedly possess the capacity to strengthen immunity in mammals. This experiment was conducted to evaluate the impact of dietary supplementation with 17 types of CpG ODNs on intestinal microbiota diversity, antioxidant capacity, and immune-related gene expression profiles of the shrimp Litopenaeus vannamei. Diets including 50 mg kg-1 CpG ODNs wrapped in egg whites were prepared and divided into 17 different groups, with 2 control groups (normal feed and feed with egg whites). These CpG ODNs supplemented diets and the control diets were fed to L. vannamei (5.15 ± 0.54 g) three times daily at 5%-8% shrimp body weight for three weeks. The results of consecutive detection of intestinal microbiota by 16S rDNA sequencing indicated that 11 of the 17 types of CpG ODNs significantly enhanced intestinal microbiota diversity, increased the populations of several probiotic bacteria, and activated possible mechanisms relevant to diseases. The immune-related genes expression and antioxidant capacity in hepatopancreas further demonstrated that the 11 types of CpG ODNs effectively improved the innate immunity of shrimp. Additionally, histology results showed that the CpG ODNs in the experiment did not damage the tissue structure of hepatopancreas. The results suggest that CpG ODNs could be used as a trace supplement to improve the intestinal health and immunity of shrimp.
Collapse
Affiliation(s)
- Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
- *Correspondence: Mengqiang Wang,
| |
Collapse
|
4
|
Tan MTH, Eshaghi Gorji M, Toh JYL, Park AY, Li Y, Gong Z, Li D. Fucoidan from Fucus versiculosus can inhibit human norovirus replication by enhancing the host innate immune response. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Lu C, Li Z, Zhang W, Guo H, Lan W, Shen G, Xia Q, Zhao P. SUMOylation of Translationally Regulated Tumor Protein Modulates Its Immune Function. Front Immunol 2022; 13:807097. [PMID: 35197979 PMCID: PMC8858932 DOI: 10.3389/fimmu.2022.807097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein possessing numerous biological functions and molecular interactions, ranging from cell growth to immune responses. However, the molecular mechanism by which TCTP regulates immune function is largely unknown. Here, we found that knockdown of Bombyx mori translationally controlled tumor protein (BmTCTP) led to the increased susceptibility of silkworm cells to virus infection, whereas overexpression of BmTCTP significantly decreased the virus replication. We further demonstrated that BmTCTP could be modified by SUMOylation molecular BmSMT3 at the lysine 164 via the conjugating enzyme BmUBC9, and the stable SUMOylation of BmTCTP by expressing BmTCTP-BmSMT3 fusion protein exhibited strong antiviral activity, which confirmed that the SUMOylation of BmTCTP would contribute to its immune responses. Further work indicated that BmTCTP is able to physically interact with interleukin enhancer binding factor (ILF), one immune molecular, involved in antivirus, and also induce the expression of BmILF in response to virus infection, which in turn enhanced antiviral activity of BmTCTP. Altogether, our present study has provided a novel insight into defending against virus via BmTCTP SUMOylation signaling pathway and interacting with key immune molecular in silkworm.
Collapse
Affiliation(s)
- Chenchen Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
- *Correspondence: Zhiqing Li,
| | - Wenchang Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Hao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqun Lan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Jiang X, Zhang X, Ren C, Ruan Y, Lu Y, Yuan L, Li J, Yan A, Wang Y, Luo P, Hu C, Chen T. Interleukin-2 enhancer binding factor 2 (ILF2) in pacific white shrimp (Litopenaeus vannamei): Alternatively spliced isoforms with different responses in the immune defenses against vibrio infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103975. [PMID: 33383068 DOI: 10.1016/j.dci.2020.103975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.
Collapse
Affiliation(s)
- Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongtong Lu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lihong Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaxi Li
- School of Stomatology and Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Aifen Yan
- School of Stomatology and Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|