1
|
Gao W, Liu X, Gao X, Wu T, Wei S, Zhang Z, Zhang H, Li Y. Genome characteristics and the ODV proteome of a second distinct alphabaculovirus from Spodoptera litura. BMC Genomics 2024; 25:91. [PMID: 38253995 PMCID: PMC10804782 DOI: 10.1186/s12864-024-09989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Spodoptera litura is a harmful pest that feeds on more than 80 species of plants, and can be infected and killed by Spodoptera litura nucleopolyhedrovirus (SpltNPV). SpltNPV-C3 is a type C SpltNPV clone, that was observed and collected in Japan. Compared with type A or type B SpltNPVs, SpltNPV-C3 can cause the rapid mortality of S. litura larvae. METHODS In this study, occlusion bodies (OBs) and occlusion-derived viruses (ODVs) of SpltNPV-C3 were purified, and OBs were observed by scanning electron microscopy (SEM). ODVs were observed under a transmission electron microscope (TEM). RESULTS Both OBs and ODVs exhibit morphological characteristics typical of nucleopolyhedroviruses (NPVs).The genome of SpltNPV-C3 was sequenced and analyzed; the total length was 148,634 bp (GenBank accession 780,426,which was submitted as SpltNPV-II), with a G + C content of 45%. A total of 149 predicted ORFs were found. A phylogenetic tree of 90 baculoviruses was constructed based on core baculovirus genes. LC‒MS/MS was used to analyze the proteins of SpltNPV-C3; 34 proteins were found in the purified ODVs, 15 of which were core proteins. The structure of the complexes formed by per os infectivity factors 1, 2, 3 and 4 (PIF-1, PIF-2, PIF-3 and PIF-4) was predicted with the help of the AlphaFold multimer tool and predicted conserved sequences in PIF-3. SpltNPV-C3 is a valuable species because of its virulence, and the analysis of its genome and proteins in this research will be beneficial for pest control efforts.
Collapse
Affiliation(s)
- Weisong Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shuang Wei
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
2
|
Genome analysis of Psilogramma increta granulovirus and its intrapopulation diversity. Virus Res 2022; 322:198946. [PMID: 36179968 DOI: 10.1016/j.virusres.2022.198946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The complete genome of Psilogramma increta granulovirus (PsinGV), isolated from P. increta (Lepidoptera: Sphingidae), was ultra-deep sequenced with a Novaseq PE150 platform and de novo assembled and annotated. The PsinGV genome is a circular double-stranded DNA, 103,721 bp in length, with a G+C content of 33.0%, the third lowest G+C content in present sequenced baculoviruses. It encodes 123 putative open reading frames, including 38 baculovirus core genes, 42 lepidopteran baculovirus conserved genes, 38 betabaculovirus conserved genes, and 5 genes unique to PsinGV. Meanwhile, 3 homologous repeated regions with the core sequence TTGCAA and 3 direct repeated sequences were identified within the PsinGV genome. Kimura two-parameters distance analysis confirmed that Psilogramma increta granulovirus is a representative of a prospective new species of the genus Betabaculovirus. Phylogenetic analysis based on the baculovirus core genes showed that PsinGV is closely related to Choristoneura fumiferana granulovirus, Clostera anastomosis granulovirus-B, and Erinnyis ello granulovirus. These four species therefore share a common ancestor residing in the Betabaculovirus genus. The genome of the PsinGV isolate contained two p10 copies: p10 and p10-2. Phylogenetic reconstruction of P10 suggests a transfer event of the p10-2 gene from an alphabaculovirus to the aforementioned common ancestor. Analysis of genomic diversity showed that 203 intrahost variants, including 182 single nucleotide variants and 21 short insertions/deletions, are present within the PsinGV isolate. Meanwhile, allele frequency indicated that the isolate contains three major genotypes, implying the archived isolate consists of several P. increta carcasses killed by PsinGV with different genotypes.
Collapse
|
3
|
Boezen D, Ali G, Wang M, Wang X, van der Werf W, Vlak JM, Zwart MP. Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genet 2022; 18:e1009806. [PMID: 35666722 PMCID: PMC9203023 DOI: 10.1371/journal.pgen.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed. Virus populations can evolve rapidly, driven by the large number of mutations that occur during virus replication. It is challenging to measure mutation rates because selection will affect which mutations are observed: beneficial mutations are overrepresented in virus populations, while deleterious mutations are selected against and therefore underrepresented. Few mutation rates have been estimated for viruses with large DNA genomes, and there are no estimates for any insect virus. Here, we estimate the mutation rate for an alphabaculovirus, a virus that infects caterpillars and has a large, 134 kilobase pair DNA genome. To ensure that selection did not bias our estimate of mutation rate, we studied which mutations occurred in a large artificial region inserted into the virus genome, where mutations did not affect viral fitness. We deep sequenced evolved virus populations, and compared the distribution of observed mutants to predictions from a simulation model to estimate mutation rate. We found evidence for a relatively low mutation rate, of one mutation in every 10 million bases replicated. This estimate is in line with expectations for a DNA virus with self-correcting replication machinery and a large genome.
Collapse
Affiliation(s)
- Dieke Boezen
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ghulam Ali
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manli Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Peng X, Zhang W, Lei C, Min S, Hu J, Wang Q, Sun X. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). BMC Genomics 2022; 23:367. [PMID: 35562654 PMCID: PMC9107115 DOI: 10.1186/s12864-022-08604-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Baculoviruses act as effective biological control agents against the invasive pest Hyphantria cunea Drury. In this study, two Chinese Hyphantria cunea nucleopolyhedrovirus (HycuNPV) isolates, HycuNPV-BJ and HycuNPV-HB, were deep sequenced and compared with the Japanese isolate, HycuNPV-N9, to determine whole-genome level diversity and evolutionary history. Results The divergence of the phylogenetic tree and the K2P distances based on 38 core-gene concatenated alignment revealed that two Chinese HycuNPV isolates were a novel species of Alphabaculovirus that infected Hyphantria cunea in China. The gene contents indicated significant differences in the HycuNPV genomes between the Chinese and Japanese isolates. The differences included gene deletions, acquisitions and structural transversions, but the main difference was the high number of single nucleotide polymorphisms (SNPs). In total, 10,393 SNPs, corresponding to approximately 8% of the entire HycuNPV-N9 genome sequence, were detected in the aligned reads. By analyzing non-synonymous variants, we found that hotspot mutation-containing genes had mainly unknown functions and most were early expressing genes. We found that the hycu78 gene which had early and late promoter was under positive selection. Biological activity assays revealed that the infectivity of HycuNPV-HB was greater than that of HycuNPV-BJ, and the killing speed of HycuNPV-HB was faster than that of HycuNPV-BJ. A comparison of molecular genetic characteristics indicated that the virulence differences between the two isolates were affected by SNP and structural variants, especially the homologous repeat regions. Conclusions The genomes of the two Chinese HycuNPV isolates were characterized, they belonged to a novel species of Alphabaculovirus that infected Hyphantria cunea in China. We inferred that the loss or gain of genetic material in the HycuNPV-HB and HycuNPV-BJ genomes resulted in new important adaptive capabilities to the H. cunea host. These results extend the current understanding of the genetic diversity of HycuNPV and will be useful for improving the applicability of this virus as a biological control agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08604-7.
Collapse
Affiliation(s)
- Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenying Zhang
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Shuifa Min
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Qinghua Wang
- Institute of Forestry Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Haidian, Beijing, 100091, China.
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
Popham HJR, Rowley DL, Harrison RL. Differential insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus isolates against corn-strain and rice-strain fall armyworm, and genomic analysis of three isolates. J Invertebr Pathol 2021; 183:107561. [PMID: 33639152 DOI: 10.1016/j.jip.2021.107561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a destructive crop pest native to North, Central, and South America that recently has spread to Africa and Asia. Isolates of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) have the potential to be developed as low-risk biopesticides for management of fall armyworm, and a commercially available formulation has been developed for control of fall armyworm in North and South America. In this study, the virulence (LC50 and LT50) of several SfMNPV isolates towards larvae of both corn-strain and rice-strain fall armyworm was assessed. Bioassays with corn-strain larvae revealed that the isolates could be organized into fast-killing (LT50 < 56 h post-infection) and slow-killing (LT50 > 68 h post-infection) groups. Rice-strain larvae exhibited narrower ranges of susceptibility to baculovirus infection and of survival times in bioassays with different isolates. Two SfMNPV isolates with rapid speeds of kill (SfMNPV-459 from Colombia and SfMNPV-1197 from Georgia, USA) along with an isolate that killed corn-strain at relatively low concentrations (SfMNPV-281 from Georgia) were selected for the complete determination of their genome sequences. The SfMNPV-1197 genome sequence shared high sequence identity with genomes of a Nicaraguan isolate, while SfMNPV-281 formed a separate clade with a USA and a Brazilian isolate in phylogenetic trees. The SfMNPV-459 sequence was more divergent with the lowest genome sequence identities in pairwise alignments with other sequenced SfMNPV genomes, and was not grouped reliably with either the 1197 clade or the 281 clade. SfMNPV-459 contained homologs of two ORFs that were unique to another Colombian isolate, but these isolates were not placed in the same clade in phylogenetic trees. This study identifies isolates with superior properties for control of fall armyworm and adds to our knowledge of the genetics of SfMNPV.
Collapse
Affiliation(s)
- Holly J R Popham
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
6
|
Genomic diversity in a population of Spodoptera frugiperda nucleopolyhedrovirus. INFECTION GENETICS AND EVOLUTION 2021; 90:104749. [PMID: 33540087 DOI: 10.1016/j.meegid.2021.104749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.
Collapse
|