1
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
2
|
Bianchessi L, De Bernardi G, Vigorelli M, Dall’Ara P, Turin L. Bacteriophage Therapy in Companion and Farm Animals. Antibiotics (Basel) 2024; 13:294. [PMID: 38666970 PMCID: PMC11047634 DOI: 10.3390/antibiotics13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Bacteriophages, which are viruses with restricted tropism for bacteria, have been employed for over a century as antimicrobial agents; they have been largely abandoned in Western countries but are constantly used in Eastern European countries with the advent of antibiotics. In recent decades, the growing spread of multidrug-resistant bacteria, which pose a serious threat to worldwide public health, imposed an urgent demand for alternative therapeutic approaches to antibiotics in animal and human fields. Based on this requirement, numerous studies have been published on developing and testing bacteriophage-based therapy. Overall, the literature largely supports the potential of this perspective but also highlights the need for additional research as the current standards are inadequate to receive approval from regulatory authorities. This review aims to update and critically revise the current knowledge on the application of bacteriophages to treat bacterial-derived infectious diseases in animals in order to provide topical perspectives and innovative advances.
Collapse
Affiliation(s)
| | | | | | | | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (G.D.B.); (M.V.); (P.D.)
| |
Collapse
|
3
|
Vallenas-Sánchez YPA, Bautista-Valles MF, Llaque-Chávarri F, Mendoza-Coello ME. Bacteriophage cocktail as a substitute for antimicrobials in companion animal dermatology. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2022. [DOI: 10.36610/j.jsaas.2022.090200097x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Vallenas-Sánchez YPA, Bautista-Valles MF, Llaque-Chávarri F, Mendoza-Coello ME. Cóctel de bacteriófagos como sustituto de antimicrobianos en dermatología de animales de compañía. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2022. [DOI: 10.36610/j.jsaas.2022.090200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Hernandez Santos H, Clark J, Terwilliger A, Maresso A. Discovery of the First Lytic Staphylococcus pseudintermedius/ Staphylococcus aureus Polyvalent Bacteriophages. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:116-124. [PMID: 36157281 PMCID: PMC9248872 DOI: 10.1089/phage.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Background There are no verified lytic Staphylococcus pseudintermedius phages in the literature and few temperate phage genomes in databases. S. pseudintermedius is an opportunistic zoonotic pathogen of great importance in veterinary and human medicine. Materials and Methods We discovered phages against canine-derived S. pseudintermedius isolates by screening dog feces, hair, and skin swabs. Fourteen new phages were isolated and characterized by genomic analysis, transmission electron microscopy, and host range determination. Results Three phages-DH2, DH5, and DS10, a phage K variant-were predicted lytic by sequencing, a designation supported by mitomycin C induction. All three are S. pseudintermedius and Staphylococcus aureus polyvalent phages, with DH2 and DS10 being strong killers of both species. Conclusions We report discovery of the first verified lytic S. pseudintermedius phages and suggest dog hair as a novel reservoir. DH2, DH5, and DS10 are promising candidates toward developing an anti-Staphylococcal phage cocktail.
Collapse
Affiliation(s)
- Haroldo Hernandez Santos
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Justin Clark
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Austen Terwilliger
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
7
|
Lynch SA, Helbig KJ. The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next? Vet Sci 2021; 8:11. [PMID: 33477504 PMCID: PMC7831068 DOI: 10.3390/vetsci8010011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is a pathogenic bacterium of concern within the veterinary sector and is involved in numerous infections in canines, including topical infections such as canine pyoderma and otitis externa, as well as systemic infections within the urinary, respiratory and reproductive tract. The high prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) within such infections is a growing concern. Therefore, it is crucial to understand the involvement of S. pseudintermedius in canine disease pathology to gain better insight into novel treatment avenues. Here, we review the literature focused on S. pseudintermedius infection in multiple anatomic locations in dogs and the role of MRSP in treatment outcomes at these niches. Multiple novel treatment avenues for MRSP have been pioneered in recent years and these are discussed with a specific focus on vaccines and phage therapy as potential therapeutic options. Whilst both undertakings are in their infancy, phage therapy is versatile and has shown high success in both animal and human medical use. It is clear that further research is required to combat the growing problems associated with MRSP in canines.
Collapse
Affiliation(s)
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|