1
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
2
|
Domin H, Zimmermann J, Taubenheim J, Fuentes Reyes G, Saueressig L, Prasse D, Höppner M, Schmitz RA, Hentschel U, Kaleta C, Fraune S. Sequential host-bacteria and bacteria-bacteria interactions determine the microbiome establishment of Nematostella vectensis. MICROBIOME 2023; 11:257. [PMID: 37978412 PMCID: PMC10656924 DOI: 10.1186/s40168-023-01701-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The microbiota of multicellular organisms undergoes considerable changes during host ontogeny but the general mechanisms that control community assembly and succession are poorly understood. Here, we use bacterial recolonization experiments in Nematostella vectensis as a model to understand general mechanisms determining bacterial establishment and succession. We compared the dynamic establishment of the microbiome on the germfree host and on inert silicone tubes. RESULTS Following the dynamic reconstruction of microbial communities on both substrates, we show that the initial colonization events are strongly influenced by the host but not by the silicone tube, while the subsequent bacteria-bacteria interactions are the main driver of bacterial succession. Interestingly, the recolonization pattern on adult hosts resembles the ontogenetic colonization succession. This process occurs independently of the bacterial composition of the inoculum and can be followed at the level of individual bacteria. To identify potential metabolic traits associated with initial colonization success and potential metabolic interactions among bacteria associated with bacterial succession, we reconstructed the metabolic networks of bacterial colonizers based on their genomes. These analyses revealed that bacterial metabolic capabilities reflect the recolonization pattern, and the degradation of chitin might be a selection factor during early recolonization of the animal. Concurrently, transcriptomic analyses revealed that Nematostella possesses two chitin synthase genes, one of which is upregulated during early recolonization. CONCLUSIONS Our results show that early recolonization events are strongly controlled by the host while subsequent colonization depends on metabolic bacteria-bacteria interactions largely independent of host ontogeny. Video Abstract.
Collapse
Affiliation(s)
- H Domin
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - J Taubenheim
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - G Fuentes Reyes
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - L Saueressig
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - D Prasse
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - M Höppner
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - R A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - U Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
- Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - C Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - S Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany.
| |
Collapse
|
3
|
Mills CE, Westlake H, Hirano YM, Miranda LS. Description of a common stauromedusa on the Pacific Coast of the United States and Canada, Haliclystus sanjuanensis new species (Cnidaria: Staurozoa). PeerJ 2023; 11:e15944. [PMID: 37744232 PMCID: PMC10512941 DOI: 10.7717/peerj.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Haliclystus "sanjuanensis" nomen nudum is the most common staurozoan on the west coast of the United States and Canada. This species was described in the M.S. Thesis by Gellermann (1926) and although that name has been in use nearly continuously since that time, no published description exists. Furthermore, the most popular operative name for this species has varied between several related species names over time, resulting in confusion. Herein, we provide a detailed description and synonymy of Haliclystus sanjuanensis n. sp., whose distribution is verified from Unalaska Island in the Aleutians (53.4° N, 166.8° W) in the northwest, to Santa Barbara County, California, just north of Point Conception (34.5° N, 120.5° W), in the south. Haliclystus sanjuanensis n. sp. is compared with the twelve other described species of Haliclystus and illustrations of both macroscopic and microscopic anatomy are provided. Haliclystus sanjuanensis n. sp. is unique among species of Haliclystus in the arrangement of the bright-white nematocyst spots in its calyx and the pattern of dark stripes running the length of the stalk and up the outside of the calyx.
Collapse
Affiliation(s)
- Claudia E. Mills
- Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, Washington, United States
| | - Hannah Westlake
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yayoi M. Hirano
- Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba, Japan
| | - Lucília S. Miranda
- Department of Zoology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|