1
|
Bao C, Chu J, Gao Q, Yang S, Gao X, Chen W, Yang F, Jiang F, Tong C, Lei M, Jiao L, Li J, Wei K, Lian X, Li K, Tikoo SK, Osterrieder N, Babiuk LA, Li Y, Jung YS, Qian Y. Marek's disease virus-1 unique gene LORF1 is involved in viral replication and MDV-1/Md5-induced atrophy of the bursa of Fabricius. PLoS Pathog 2025; 21:e1012891. [PMID: 39899476 PMCID: PMC11790089 DOI: 10.1371/journal.ppat.1012891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Marek's disease virus (MDV), an alphaherpesvirus, causes severe immunosuppression and T cell lymphomas in chickens, known as Marek's disease (MD), an economically important poultry disease primarily controlled by vaccination. Importantly, it also serves as a comparative model for studying herpesvirus-induced tumor formation in humans. MDV encodes more than 100 genes, most of which have unknown functions. MDV LORF1 is unique to serotype I MDV (MDV-1), lacking homologs in other herpesviruses, and has not been explored yet. To this end, an infectious bacterial artificial chromosome (BAC) harboring the complete genome of the MDV-1 very virulent strain Md5 was generated, and the rescued rMd5 maintained biological properties similar to the parental virus both in vitro and in vivo. Subsequently, rMd5ΔLORF1, a recombinant Md5 virus deficient in pLORF1 expression, was generated by a frameshift mutation in the LORF1 gene. Chickens infected with rMd5ΔLORF1 exhibited a lower mortality rate and delayed bursal atrophy than those infected with the parental rMd5 and the revertant virus (rMd5-reLORF1). Consistently, viral loads of rMd5ΔLORF1 were obviously lower than those of rMd5 or rMd5-reLORF1 in the bursa, but not in the spleen. Importantly, we found that pLORF1 deficiency impairs viral replication in bursal B cells. Furthermore, we showed that pLORF1 associated with the cellular membrane, interacted with MDV structural proteins, and exhibited punctate colocalization with tegument or capsid proteins in the cytoplasm. Taken together, this study demonstrates for the first time that the MDV-1 unique gene LORF1 is involved in MDV-induced bursal atrophy but not in tumor formation.
Collapse
Affiliation(s)
- Chenyi Bao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jun Chu
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shasha Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenwen Chen
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fuchun Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fei Jiang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Tong
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Lei
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Linlin Jiao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Jitong Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Kexin Wei
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Xue Lian
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Kai Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Suresh Kumar Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Nikolaus Osterrieder
- Tierärztliche Hochschule Hannover, Hannover, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Lorne A. Babiuk
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Canada
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Yong-Sam Jung
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| |
Collapse
|
2
|
Wang L, Zhu W, Gong L, Kang Y, Lv L, Zhai Y, Zhang Y, Qiu X, Zhuang G, Sun A. MDV-encoded protein kinase U S3 phosphorylates WTAP to inhibit transcriptomic m 6A modification and cellular protein translation. Vet Microbiol 2025; 300:110335. [PMID: 39644648 DOI: 10.1016/j.vetmic.2024.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Marek's disease virus (MDV)-encoded US3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), US3 phosphorylates the N6-methyladenosine (m6A) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting m6A modification. However, the role and mechanism of US3-mediated WTAP phosphorylation during MDV infection remain undefined. Our study revealed that MDV infection in vitro does not alter WTAP expression, while significant changes in WTAP expression occur during the MDV life cycle in vivo. We demonstrated that MDV-encoded US3 interacts with and co-localizes with WTAP in the nucleus. Further analysis showed that US3 binds to WTAP's C-terminal domain and phosphorylates WTAP at S273, S305, S314, and S375. Notably, the interaction between US3 and WTAP does not affect WTAP stability but inhibits transcriptomic m6A modification and cellular protein translation. Therefore, these findings enhance our understanding of the molecular mechanisms underlying MDV infection.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Gong
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunyun Zhai
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| | - Aijun Sun
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Huang J, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Ou X, Sun D, He Y, Wu Z, Zhao X, Zhang S, Huang J, Zhu D, Jia R, Liu M, Chen S. Duck enteritis virus LORF4 gene is a late gene and nonessential for virus replication in vitro. Poult Sci 2024; 103:104275. [PMID: 39288717 PMCID: PMC11421319 DOI: 10.1016/j.psj.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Duck enteritis virus (DEV) is an avian alpha-herpesvirus that primarily causes an acute and highly contagious infectious disease of ducks. The LORF4 gene is one of the specific genes of DEV, with limited reports on its biological characteristics and functions. This study investigates the basic biological properties of LORF4 protein (pLORF4). The results show that DEV LORF4 is a late gene mainly localized in the cytoplasm of DEV-infected DEF. To explore the role of pLORF4 in the DEV replication life cycle, a recombinant virus lacking pLORF4 expression was constructed. The results showed that pLORF4 is not essential for virus replication and does not affect virus adsorption, assembly and release, it plays a positive role in virus invasion and DNA replication. In summary, this study provides a foundation for further research on the function of the LORF4 gene.
Collapse
Affiliation(s)
- Jie Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Zhu X, Wang L, Gong L, Zhai Y, Wang R, Jin J, Lu W, Zhao X, Liao Y, Zhang G, Zhuang G, Sun A. LORF9 of Marek's disease virus is involved in the early cytolytic replication of B lymphocytes and can act as a target for gene deletion vaccine development. J Virol 2023; 97:e0157423. [PMID: 38014947 PMCID: PMC10734499 DOI: 10.1128/jvi.01574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Marek's disease virus (MDV) is a highly infectious and oncogenic virus that can induce severe T cell lymphomas in chickens. MDV encodes more than 100 genes, most of which have unknown functions. This work indicated that the LORF9 gene is necessary for MDV early cytolytic replication in B lymphocytes. In addition, we have found that the LORF9 deletion mutant has a comparative immunological protective effect with CVI988/Rispens vaccine strain against very virulent MDV challenge. This is a significant discovery that LORF9 can be exploited as a possible target for the development of an MDV gene deletion vaccine.
Collapse
Affiliation(s)
- Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Lele Gong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Yunyun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Jiaxin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Wenlong Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Sun A, Zhao X, Zhu X, Kong Z, Liao Y, Teng M, Yao Y, Luo J, Nair V, Zhuang G, Zhang G. Fully Attenuated meq and pp38 Double Gene Deletion Mutant Virus Confers Superior Immunological Protection against Highly Virulent Marek's Disease Virus Infection. Microbiol Spectr 2022; 10:e0287122. [PMID: 36350141 PMCID: PMC9769808 DOI: 10.1128/spectrum.02871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported. IMPORTANCE MDV is a highly contagious immunosuppressive and neoplastic pathogen. The virus can be controlled through vaccination via an attenuated meq deletion mutant virus that retains the ability to induce lymphoid organ atrophy. In this study, we overcame the deficiency by generating meq and pp38 double deletion mutant virus. Indeed, the successfully generated meq and pp38 double deletion mutant virus had significantly reduced replication capacity in vivo but not in vitro. It was fully attenuated and conferred superior protection efficacy against very virulent MDV challenge. In addition, the possible immunological protective mechanism of the double deletion mutant virus was shown to be different from that of the gold standard MDV vaccine, CVI988/Rispens. Overall, we successfully generated an attenuated meq deletion mutant virus and widened the range of potential vaccine candidates. Importantly, this study provides for the first time the theoretical basis of vaccination induced by fully attenuated gene-deletion mutant virus.
Collapse
Affiliation(s)
- Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Zhengjie Kong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Yongxiu Yao
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Venugopal Nair
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
6
|
Li K, Yu Z, Lan X, Wang Y, Qi X, Cui H, Gao L, Wang X, Zhang Y, Gao Y, Liu C. Complete genome analysis reveals evolutionary history and temporal dynamics of Marek’s disease virus. Front Microbiol 2022; 13:1046832. [PMID: 36406400 PMCID: PMC9669313 DOI: 10.3389/fmicb.2022.1046832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Marek’s disease has caused enormous losses in poultry production worldwide. However, the evolutionary process and molecular mechanisms underlying Marek’s disease virus (MDV) remain largely unknown. Using complete genomic sequences spanning an unprecedented diversity of MDVs, we explored the evolutionary history and major patterns in viruses sampled from 1964 to 2018. We found that the evolution of MDV strains had obvious geographical features, with the Eurasian and North American strains having independent evolutionary paths, especially for Asian strains. The evolution of MDVs generally followed a clock-like structure with a relatively high evolutionary rate. Asian strains had evolved at a faster rate than European strains, with most genetic mutations occurring in Asian strains. Our results showed that all recombination events occurred in the UL and US subregions. We found direct evidence of a closer correlation between Eurasian strains, related to a series of reorganization events represented by the European strain ATE2539. We also discovered that the vaccine strains had recombined with the wild virulent strains. Base substitution and recombination were found to be the two main mechanisms of MDV evolution. Our study offers novel insights into the evolution of MDVs that could facilitate predicting the spread of infections, and hence their control.
Collapse
|
7
|
Wannaratana S, Tunterak W, Prakairungnamthip D, Sasipreeyajan J, Thontiravong A. Genetic characterization of Marek's disease virus in chickens in Thailand reveals a high genetic diversity of circulating strains. Transbound Emerg Dis 2022; 69:3771-3779. [PMID: 36315934 DOI: 10.1111/tbed.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Marek's disease (MD) is a highly contagious lymphoproliferative disease of chickens caused by Gallid alphaherpesvirus 2, commonly known as serotype 1 Marek's disease virus (MDV-1). Despite widespread vaccination, MD-related cases have been frequently observed worldwide, including in Thailand. However, no information is available on the genetic characteristics of MDV-1 field strains circulating in chickens in Thailand. This study investigated the geographic distribution and genetic characteristics of MDV-1 field strains circulating in chickens in Thailand between 2013 and 2021 by analysing the Meq and pp38 genes. Out of a total of the 286 clinical samples obtained from 70 chicken farms located in major chicken raising areas of Thailand, 138 samples (48.25%) from 46 chicken farms (65.71%) tested positive for MDV-1 field strains. Results demonstrated that MDV-1 field strains were extensively distributed in major chicken raising areas. Phylogenetic analyses based on the Meq gene revealed that four clusters of MDV-1 circulated in chickens in Thailand between 2013 and 2021. Among these clusters, cluster 1 was the predominant cluster circulating in chickens in Thailand. Additionally, our findings based on molecular characteristics of Meq and pp38 gene/protein suggested that most of the Thai MDV-1 field strains were potentially highly virulent. In conclusion, our data demonstrated the circulation of different clusters of MDV-1 with virulence characteristics in chickens in Thailand, indicating high genetic diversity of MDV-1 in Thailand. This study highlights the importance of more effective vaccine development and routine MDV-1 surveillance for early detection and control of highly virulent MDV-1.
Collapse
Affiliation(s)
- Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Bang Phra, Chonburi, Thailand
| | - Wikanda Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duangduean Prakairungnamthip
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jiroj Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Vector-Borne Disease Research Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Du X, Zhou D, Zhou J, Xue J, Wang G, Cheng Z. Marek’s disease virus serine/threonine kinase Us3 facilitates viral replication by targeting IRF7 to block IFN-β production. Vet Microbiol 2022; 266:109364. [DOI: 10.1016/j.vetmic.2022.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|