1
|
Pedroso-Roussado C, Pestana M, Dias R, Nunes M, Pascoal P, Pereira M, Nunes N. Tagus River microbial profile through nanopore sequencing on samples gathered from Prainha do Braco de Prata, Lisbon. OPEN RESEARCH EUROPE 2024; 4:155. [PMID: 40271382 PMCID: PMC12015429 DOI: 10.12688/openreseurope.18072.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 04/25/2025]
Abstract
Background Freshwater ecosystems play a vital role for humans and more-than-humans, and their study can elucidate their dynamic state throughout time. However, there is not much knowledge about the microbial profiles and their relevance for the ecosystem balance is still unclear. Methods In this Brief Report three freshwater samples collected in the Tagus River north margin were analysed through 16S-targeted nanopore sequencing and by customized bioinformatics pipeline. Results Our results revealed a consensual microbial profile with Candidatus Pelagibacter, Egibacter, and Ralstonia as the most abundant genera. Additionally, through a literature review we found that the ecosystem services provided by these genera are mostly related to organic matter decomposition. Conclusions Despite the need for a more robust sampling and analyses, we conclude that there is potential to use microbial profile approaches to help define the relevant microbial biomarkers to clarify the ecosystem services in the Tagus River freshwater ecosystem.
Collapse
Affiliation(s)
| | - Mariana Pestana
- ITI/LARSyS, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal
| | - Ricardo Dias
- BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Mónica Nunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Pedro Pascoal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Marcelo Pereira
- BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa Faculdade de Ciencias, Lisbon, Portugal
| | - Nuno Nunes
- ITI/LARSyS, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal
| |
Collapse
|
2
|
Tang Y, Zhou M, Yang C, Liu R, Du H, Ma M. Advances in isolated phages that affect Ralstonia solanacearum and their application in the biocontrol of bacterial wilt in plants. Lett Appl Microbiol 2024; 77:ovae037. [PMID: 38573829 DOI: 10.1093/lambio/ovae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Bacterial wilt is a widespread and devastating disease that impacts the production of numerous crucial crops worldwide. The main causative agent of the disease is Ralstonia solanacearum. Due to the pathogen's broad host range and prolonged survival in the soil, it is challenging to control the disease with conventional strategies. Therefore, it is of great importance to develop effective alternative disease control strategies. In recent years, phage therapy has emerged as an environmentally friendly and sustainable biocontrol alternative, demonstrating significant potential in controlling this severe disease. This paper summarized basic information about isolated phages that infect R. solanacearum, and presented some examples of their application in the biocontrol of bacterial wilt. The risks of phage application and future prospect in this area were also discussed. Overall, R. solanacearum phages have been isolated from various regions and environments worldwide. These phages belong mainly to the Inoviridae, Autographiviridae, Peduoviridae, and Cystoviridae families, with some being unclassified. Studies on the application of these phages have demonstrated their ability to reduce pathogenicity of R. solanacearum through direct lysis or indirect alteration of the pathogen's physiological properties. These findings suggested bacteriophage is a promising tool for biocontrol of bacterial wilt in plants.
Collapse
Affiliation(s)
- You Tang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Moxi Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Chuyun Yang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Rong Liu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongyi Du
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| |
Collapse
|
3
|
Zhang W, Wang R, Zou X, Gu C, Yang Q, He M, Xiao W, He L, Zhao M, Yu Z. Comparative genomic analysis of alloherpesviruses: Exploring an available genus/species demarcation proposal and method. Virus Res 2023; 334:199163. [PMID: 37364814 PMCID: PMC10410580 DOI: 10.1016/j.virusres.2023.199163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The family Alloherpesviridae contains herpesviruses of fish and amphibians. Due to the significant economic losses to aquaculture that herpesviruses can cause, the primary areas of research interest are concerning their pathogenesis and prevention. Despite alloherpesvirus genomic sequences becoming more widely accessible, methods regarding their genus/species classification are still relatively unexplored. In the present study, the phylogenetic relationships between 40 completely sequenced alloherpesviruses were illustrated by the viral proteomic tree (ViPTree), which was divided into three monophyletic groups, namely Cyprinivirus, Ictalurivirus and Batrachovirus. Additionally, average nucleotide identity (ANI) and average amino acid identity (AAI) analyses were performed across all available sequences and clearly displayed species boundaries with the threshold value of ANI/AAI set at 90%. Subsequently, core-pan analysis uncovered 809 orthogroups and 11 core genes shared by all 40 alloherpesvirus genome sequences. For the former, a 15 percent identity depicts a clear genus boundary; for the latter, 8 of them may be qualified for phylogenetic analysis based on amino acid or nucleic acid sequences after being verified using maximum likelihood (ML) or neighbor-joining (NJ) phylogenetic trees. Finally, although the dot plot analysis was valid for the members within Ictalurivirus, it was unsuccessful for Cyprinivirus and Batrachovirus. Taken together, the comparison of individual methodologies provides a wide range of alternatives for alloherpesviruses classification under various circumstances.
Collapse
Affiliation(s)
- Wenjie Zhang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China
| | - Ran Wang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China
| | - Xiaoxia Zou
- Suining First People's Hospital, Suining, PR China
| | - Congwei Gu
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Qian Yang
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Wudian Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Lvqin He
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Mingde Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou Sichuan, PR China; Model Animal and Human Disease Research of Luzhou Key Laboratory, PR China; Scholl of Basic Medical Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
4
|
Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z. Ralstonia solanacearum - A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1141902. [PMID: 36909396 PMCID: PMC9998985 DOI: 10.3389/fpls.2023.1141902] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant pathogens present in soil cause severe losses to plants every year. Among them, Ralstonia solanacearum, because of its destructive nature, is the world's second most damaging bacterial phytopathogen. Over 310 species of plants belonging to 42 plant families are infected by this deadly pathogen. Around the world, the bacterial wilt (BW) disease causes yield losses that range from 20 to 100%. Control measures for managing this pathogen comprises several diverse approaches. Regardless of whether several control methods are developed to manage the BW disease, efficient management strategies with eco-friendly effects and the desired level of effective control is still awaited and there is need to developed effective management methods to eliminate this fetal disease in several crops under field conditions. An analysis of development in the management strategies will provide an effective way to search and develop control methods with desirable level of effectiveness. In this review, we discussed and analyzed the information reported on the development of various management strategies for the management of R. solanacearum along with the comprehensive presentation on action mechanism of these management strategies. We have also made an effort to summarize the challenges that make hurdle in the effective management of this deadly pathogen. The analysis of the information in this review article will assist in future implications of management strategies and help in developing effective control measures with more efficacy.
Collapse
Affiliation(s)
- Zhaojun Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Shujia Cheng
- Economy College of Changchun University, Changchun, China
| | - Hongjie Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Jing Zong
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Zhe Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
In through the Out Door: A Functional Virulence Factor Secretion System Is Necessary for Phage Infection in Ralstonia solanacearum. mBio 2022; 13:e0147522. [PMID: 36314808 PMCID: PMC9765573 DOI: 10.1128/mbio.01475-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Bacteriophages put intense selective pressure on microbes, which must evolve diverse resistance mechanisms to survive continuous phage attacks. We used a library of spontaneous Bacteriophage Insensitive Mutants (BIMs) to learn how the plant pathogen Ralstonia solanacearum resists the virulent lytic podophage phiAP1. Phenotypic and genetic characterization of many BIMs suggested that the R. solanacearum Type II Secretion System (T2SS) plays a key role in phiAP1 infection. Using precision engineered mutations that permit T2SS assembly but either inactivate the T2SS GspE ATPase or sterically block the secretion portal, we demonstrated that phiAP1 needs a functional T2SS to infect R. solanacearum. This distinction between the static presence of T2SS components, which is necessary but not sufficient for phage sensitivity, and the energized and functional T2SS, which is sufficient, implies that binding interactions alone cannot explain the role of the T2SS in phiAP1 infection. Rather, our results imply that some aspect of the resetting of the T2SS, such as disassembly of the pseudopilus, is required. Because R. solanacearum secretes multiple virulence factors via the T2SS, acquiring resistance to phiAP1 also dramatically reduced R. solanacearum virulence on tomato plants. This acute fitness trade-off suggests this group of phages may be a sustainable control strategy for an important crop disease. IMPORTANCE Ralstonia solanacearum is a destructive plant pathogen that causes lethal bacterial wilt disease in hundreds of diverse plant hosts, including many economically important crops. Phages that kill R. solanacearum could offer effective and environmentally friendly wilt disease control, but only if the bacterium cannot easily evolve resistance. Encouragingly, most R. solanacearum mutants resistant to the virulent lytic phage phiAP1 no longer secreted multiple virulence factors and had much reduced fitness and virulence on tomato plants. Further analysis revealed that phage phiAP1 needs a functional type II secretion system to infect R. solanacearum, suggesting this podophage uses a novel infection mechanism.
Collapse
|
6
|
Grisales-Vargas CD, Ramírez-Cuartas CA, Pérez-Jaramillo JE. The First Complete Genome Resource of a Ralstonia solanacearum Phage UAM5 from Colombia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:496-499. [PMID: 35395909 DOI: 10.1094/mpmi-01-22-0033-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Cristian D Grisales-Vargas
- Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, 1226, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Camilo A Ramírez-Cuartas
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
- Grupo de Bacteriología Agrícola y Ambiental-BA&A, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan E Pérez-Jaramillo
- Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, 1226, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
7
|
Viability, Stability and Biocontrol Activity in Planta of Specific Ralstonia solanacearum Bacteriophages after Their Conservation Prior to Commercialization and Use. Viruses 2022; 14:v14020183. [PMID: 35215777 PMCID: PMC8876693 DOI: 10.3390/v14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.
Collapse
|