1
|
Mirza JD, de Oliveira Guimarães L, Wilkinson S, Rocha EC, Bertanhe M, Helfstein VC, de-Deus JT, Claro IM, Cumley N, Quick J, Faria NR, Sabino EC, Kirchgatter K, Loman NJ. Tracking arboviruses, their transmission vectors and potential hosts by nanopore sequencing of mosquitoes. Microb Genom 2024; 10:001184. [PMID: 38240642 PMCID: PMC10868619 DOI: 10.1099/mgen.0.001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.
Collapse
Affiliation(s)
- Jeremy D. Mirza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Sam Wilkinson
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Esmenia C. Rocha
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayara Bertanhe
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ingra M. Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
| | - Nicola Cumley
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Joshua Quick
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karin Kirchgatter
- Instituto Pasteur, São Paulo, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|