1
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2025; 22:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Pennisi R, Gentile D, Trischitta P, Barreca D, Rescifina A, Mandalari G, Sciortino MT. Selective Control by Pistacia vera L. and Its Carotenoid Zeaxanthin on SARS-CoV-2 Virus. Int J Mol Sci 2025; 26:1667. [PMID: 40004129 PMCID: PMC11855127 DOI: 10.3390/ijms26041667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Since the onset of the COVID-19 (COronaVIrus Disease 19) pandemic, SARS-CoV-2 has exhibited a high transmission rate, further enhanced by new variants able to better adapt to humans. Addressing this issue has been challenging due to viral resistance and side effects associated with antiviral drugs and vaccines. As a result, there has been a growing interest in plant-derived compounds with antiviral properties. Our study revealed that pistachio extracts significantly inhibited SARS-CoV-2 viral entry. Employing pseudotyped particles bearing the S protein of SARS-CoV-2, we demonstrated that treatment with pistachio extracts inhibited binding of alpha (α) and omicron (ο) SARS-CoV-2 variants. Furthermore, our study revealed that the pistachio carotenoid zeaxanthin exhibited a different inhibitory activity against two SARS-CoV-2 variants. In silico analyses demonstrated a strong interaction between zeaxanthin and the receptor-binding domain (RBD) domain of the omicron spike (S) protein, thus reducing pseudovirus entry. However, zeaxanthin's weaker interaction with the alpha variant's RBD was insufficient to inhibit entry. Additionally, zeaxanthin suppressed the expression of the host protease TMPRSS2 at the protein level, thereby limiting the internalization of the alpha variant, which relies on TMPRSS2 for cellular entry.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V. le A. Doria, 95125 Catania, Italy;
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| |
Collapse
|
3
|
Lv W, Zhou L, Wu J, Cheng J, Duan Y, Qian W. Anti-HSV-1 agents: an update. Front Pharmacol 2025; 15:1451083. [PMID: 39931518 PMCID: PMC11808302 DOI: 10.3389/fphar.2024.1451083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
Herpes simplex virus type I (HSV-1) is a member of the α-herpesvirus subfamily and is capable of causing herpes simplex keratitis, herpes labialis, and herpes simplex encephalitis. HSV-1 is well known for its lytic infections at the primary sites and for establishing latency in the sensory neuronal ganglia, with occasional recurrent infections. To date, there are no approved commercially available vaccines, and anti-HSV-1 drugs such as specific or non-specific nucleotide (nucleoside) analogs and helicase-primase inhibitors have become the main clinical agents for the treatment of HSV-1 infections despite challenges from resistance. Therefore, development of new anti-HSV-1 compounds or therapies is key to addressing the issue of resistance. The present review provides an update on the progress made over approximately 60 years regarding anti-HSV-1 agents while also highlighting future perspectives for controlling HSV-1 infections.
Collapse
Affiliation(s)
- Wenwen Lv
- College of Pharmaceutics, Kunming Medical University, Kunming, China
| | - Lei Zhou
- College of Pharmaceutics, Kunming Medical University, Kunming, China
| | - Jia Wu
- College of Basic Medical, Kunming Medical University, Kunming, China
| | - Jishuai Cheng
- Department of Experimental Animals, Kunming Medical University, Kunming, China
| | - Yongzhong Duan
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Wen Qian
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
| |
Collapse
|
4
|
Mandalari G, Pennisi R, Gervasi T, Sciortino MT. Pistacia vera L. as natural source against antimicrobial and antiviral resistance. Front Microbiol 2024; 15:1396514. [PMID: 39011148 PMCID: PMC11246903 DOI: 10.3389/fmicb.2024.1396514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Increased global research is focused on the development of novel therapeutics to combat antimicrobial and antiviral resistance. Pistachio nuts represent a good source of protein, fiber, monounsaturated fatty acids, minerals, vitamins, and phytochemicals (carotenoids, phenolic acids, flavonoids and anthocyanins). The phytochemicals found in pistachios are structurally diverse compounds with antimicrobial and antiviral potential, demonstrated as individual compounds, extracts and complexed into nanoparticles. Synergistic effects have also been reported in combination with existing drugs. Here we report an overview of the antimicrobial and antiviral potential of pistachio nuts: studies show that Gram-positive bacterial strains, such as Staphylococcus aureus, are the most susceptible amongst bacteria, whereas antiviral effect has been reported against herpes simplex virus 1 (HSV-1). Amongst the known pistachio compounds, zeaxanthin has been shown to affect both HSV-1 attachment penetration of human cells and viral DNA synthesis. These data suggest that pistachio extracts and derivatives could be used for the topical treatment of S. aureus skin infections and ocular herpes infections.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
6
|
Pennisi R, Gentile D, Rescifina A, Napoli E, Trischitta P, Piperno A, Sciortino MT. An Integrated In Silico and In Vitro Approach for the Identification of Natural Products Active against SARS-CoV-2. Biomolecules 2023; 14:43. [PMID: 38254643 PMCID: PMC10813393 DOI: 10.3390/biom14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy;
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy;
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| |
Collapse
|