1
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Severi AA, Akbari B. CRISPR-Cas9 delivery strategies and applications: Review and update. Genesis 2024; 62:e23598. [PMID: 38727638 DOI: 10.1002/dvg.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/28/2024]
Abstract
Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ali Alizadeh Severi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
3
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
4
|
Zhu L, Tillquist N, Scatolin G, Gately R, Kawaida M, Reiter A, Reed S, Zinn S, Govoni K, Jiang Z. Maternal restricted- and over- feeding during gestation perturb offspring sperm epigenome in sheep. Reproduction 2023; 166:311-322. [PMID: 37647207 PMCID: PMC10962644 DOI: 10.1530/rep-23-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
IN BRIEF Inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. This study shows that maternal restricted - and over- nutrition during gestation do not affect semen characteristics in F1 male offspring but alters offspring sperm sncRNA profiles and DNA methylome in sheep. ABSTRACT There is a growing body of evidence that inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. However, little is known about the effects of maternal nutrition during gestation on male offspring reproduction. Here, using a sheep model of maternal restricted - and over - nutrition (60 or 140% of the National Research Council requirements) during gestation, we found that maternal restricted - and over - nutrition do not affect semen characteristics (i.e. volume, sperm concentration, pH, sperm motility, sperm morphology) or scrotal circumference in male F1 offspring. However, using small RNA sequencing analysis, we demonstrated that both restricted - and over - nutrition during gestation induced marked changes in composition and expression of sperm small noncoding RNAs (sncRNAs) subpopulations including in male F1 offspring. Whole-genome bisulfite sequencing analysis further identified specific genomic loci where poor maternal nutrition resulted in alterations in DNA methylation. These findings indicate that maternal restricted - and over - nutrition during gestation induce epigenetic modifications in sperm of F1 offspring sperm in sheep, which may contribute to environmentally influenced phenotypes in ruminants.
Collapse
Affiliation(s)
- Linkai Zhu
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| | - Nicole Tillquist
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Giovanna Scatolin
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| | - Rachael Gately
- Department of Ambulatory Medicine and Theriogenology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536
| | - Mia Kawaida
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Amanda Reiter
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Steven Zinn
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Kristen Govoni
- Department of Animal Science, University of Connecticut, CT, 06269, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, FL 32610, USA
| |
Collapse
|
5
|
Cardoso AR, Lobo J, Miranda-Gonçalves V, Henrique R, Jerónimo C. Epigenetic alterations as therapeutic targets in Testicular Germ Cell Tumours : current and future application of 'epidrugs'. Epigenetics 2020; 16:353-372. [PMID: 32749176 DOI: 10.1080/15592294.2020.1805682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are heterogeneous neoplasms mostly affecting young-adult men. Despite high survival rates, some patients with disseminated disease acquire cisplatin resistance, entailing the need for less toxic therapies. Epigenetic alterations constitute an important feature of TGCTs, which are also implicated in resistance mechanism(s). These alterations might be used as potential targets to design epigenetic drugs. To date, several compounds have been explored and evaluated regarding therapeutic efficacy, making use of pre-clinical studies with in vitro and in vivo models, and some have already been explored in clinical trials. This review summarizes the several epigenetic mechanisms at play in these neoplasms, the current challenges in the field of TGCTs and critically reviews available data on 'epidrugs' in those tumours.
Collapse
Affiliation(s)
- Ana Rita Cardoso
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| |
Collapse
|
6
|
Tobar-Tosse F, Veléz PE, Ocampo-Toro E, Moreno PA. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes. BMC Genomics 2018; 19:862. [PMID: 30537933 PMCID: PMC6288848 DOI: 10.1186/s12864-018-5196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Repetitive DNA sequences (Repeats) are significant regions in the human genome that have a specific genomic distribution, structure, and several binding sites for genome architecture and function. In consequence, the possible configurations of Repeats in specific and dynamic regions like the gene promoters could define footprints for molecular mechanisms, pathways, and cell function beyond their density in the genome. Here we explored the distribution of Repeats in the upstream promoter region of the human coding genes with the aim to identify specific configurations, clusters and functional meaning of those elements. Our method includes structural descriptions, hierarchical clustering, pathway association, and functional enrichment analysis. Results We report here several configurations of Repeats in the upstream promoter region (UPR), which define 2729 patterns for the 80% of the human coding genes. There are 47 types of Repeats in these configurations, where the most frequent were Alu, Low_complexity, MIR, Simple_repeat, LINE/L2, LINE/L1, hAT-Charlie, and ERV1. The distribution, length, and the high frequency of Repeats in the UPR defines several patterns and clusters, where the minimum frequency of configuration among Repeats was higher than 0.7. We found those clusters associated with cellular pathways and ontologies; thus, it was plausible to determine groups of Repeats to specific functional insights, for example, pathways for Genetic Information Processing or Metabolism shows particular groups of Repeats with specific configurations. Conclusion Based on these findings, we propose that specific configurations of repetitive elements describe frequent patterns in the upstream promoter for sets of human coding genes, which those correlated to specific and essential cell pathways and functions. Electronic supplementary material The online version of this article (10.1186/s12864-018-5196-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Patricia E Veléz
- Departamento de Biología, FACNED, Universidad del Cauca, Popayán, Colombia
| | - Eliana Ocampo-Toro
- Especialización en Hematología y Oncología Clínica, Universidad Libre Seccional Cali, Cali, Colombia
| | - Pedro A Moreno
- Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
7
|
Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. Front Chem 2017; 5:23. [PMID: 28439515 PMCID: PMC5384584 DOI: 10.3389/fchem.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes are scattered with thousands of copies of endogenous retroviruses (ERVs), mobile genetic elements that are relics of ancient retroviral infections. After inserting copies into the germ line of a host, most ERVs accumulate mutations that prevent the normal assembly of infectious viral particles, becoming trapped in host genomes and unable to leave to infect other cells. While most copies of ERVs are inactive, some are transcribed and encode the proteins needed to generate new insertions at novel loci. In some cases, old copies are removed via recombination and other mechanisms. This creates a shifting landscape of ERV copies within host genomes. New insertions can disrupt normal expression of nearby genes via directly inserting into key regulatory elements or by containing regulatory motifs within their sequences. Further, the transcriptional silencing of ERVs via epigenetic modification may result in changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be potent sources of regulatory disruption as well as genetic innovation. Here, we provide a brief review of the association between ERVs and gene expression, especially as observed in pre-implantation development and placentation. Moreover, we will describe how disruption of the regulated mechanisms of ERVs may impact somatic tissues, mostly in the context of human disease, including cancer, neurodegenerative disorders, and schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been pressed into the service of their host genomes to aid in the innate immune response to exogenous viral infections.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA
| | - Jimi L Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA
| | - Lucia Carbone
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA.,Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Oregon Health & Science University School of MedicinePortland, OR, USA
| |
Collapse
|
8
|
Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death Differ 2015; 23:64-75. [PMID: 26024393 DOI: 10.1038/cdd.2015.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.
Collapse
|
9
|
Yu HL, Zhao ZK, Zhu F. The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review). Int J Mol Med 2013; 32:755-62. [PMID: 23900638 DOI: 10.3892/ijmm.2013.1460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/30/2013] [Indexed: 11/06/2022] Open
Abstract
Human endogenous retrovirus (HERV) and solitary long terminal repeats (LTRs) constitute 8% of the human genome. Although most HERV genes are partially deleted and not intact, HERV LTRs comprise features including promoters, enhancers, selective splicer sites and polyadenylation sites in order to regulate the expression of neighboring genes. Owing to the genetic instability of LTRs, their wide distributions along human chromosomes are not only non-random, but are also correlated with gene density. Considerable evidence indicates that HERV LTRs regulate the expression of their adjacent viral and cellular genes in placental development and tumorigenesis. However, the regulatory mechanism of HERV LTRs on the expression of its neighboring cancer-associated genes in human cancers remains to be elucidated. Insertional mutagenesis, recombination and polymorphism are three principal factors of LTR that contribute to its genetic instability. Moreover, genetic instability, hypomethylation, transactivation and the antisense transcript of LTRs enhance the activity of LTRs and regulate the expression of their adjacent genes in human cancers. Therefore, in the present review, we examined the mechanism of HERV LTRs in tumorigenesis in combination with the structure and function of LTRs.
Collapse
Affiliation(s)
- Hong-Lian Yu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, Hubei 430071, PR China
| | | | | |
Collapse
|
10
|
Genes associated with the cis-regulatory functions of intragenic LINE-1 elements. BMC Genomics 2013; 14:205. [PMID: 23530910 PMCID: PMC3643820 DOI: 10.1186/1471-2164-14-205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thousands of intragenic long interspersed element 1 sequences (LINE-1 elements or L1s) reside within genes. These intragenic L1 sequences are conserved and regulate the expression of their host genes. When L1 methylation is decreased, either through chemical induction or in cancer, the intragenic L1 transcription is increased. The resulting L1 mRNAs form RISC complexes with pre-mRNA to degrade the complementary mRNA. In this study, we screened for genes that are involved in intragenic L1 regulation networks. RESULTS Genes containing L1s were obtained from L1Base (http://l1base.molgen.mpg.de). The expression profiles of 205 genes in 516 gene knockdown experiments were obtained from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). The expression levels of the genes with and without L1s were compared using Pearson's chi-squared test. After a permutation based statistical analysis and a multiple hypothesis testing, 73 genes were found to induce significant regulatory changes (upregulation and/or downregulation) in genes with L1s. In detail, 5 genes were found to induce both the upregulation and downregulation of genes with L1s, whereas 27 and 37 genes induced the downregulation and upregulation, respectively, of genes with L1s. These regulations sometimes differed depending on the cell type and the orientation of the intragenic L1s. Moreover, the siRNA-regulating genes containing L1s possess a variety of molecular functions, are responsible for many cellular phenotypes and are associated with a number of diseases. CONCLUSIONS Cells use intragenic L1s as cis-regulatory elements within gene bodies to modulate gene expression. There may be several mechanisms by which L1s mediate gene expression. Intragenic L1s may be involved in the regulation of several biological processes, including DNA damage and repair, inflammation, immune function, embryogenesis, cell differentiation, cellular response to external stimuli and hormonal responses. Furthermore, in addition to cancer, intragenic L1s may alter gene expression in a variety of diseases and abnormalities.
Collapse
|
11
|
A novel function of RNAs arising from the long terminal repeat of human endogenous retrovirus 9 in cell cycle arrest. J Virol 2012; 87:25-36. [PMID: 23097441 DOI: 10.1128/jvi.01648-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human genome contains approximately 50 copies of the replication-defective human endogenous retrovirus 9 (ERV-9) and thousands of copies of its solitary long term repeat (sLTR) element. While some sLTRs are located upstream of critical genes and have enhancer activity, other sLTRs are located within introns and may be transcribed as RNAs. We found that intronic RNAs arising from U3 sLTRs of ERV-9 were expressed as both sense (S) and antisense (AS) transcripts in all human cells tested but that expression levels differed in malignant versus nonmalignant cells. In nonmalignant cells, AS was expressed at higher levels than S and at higher levels than in malignant cells; in malignant cells, AS was expressed at amounts equivalent to those of S RNA. Critically, U3 AS RNA was found to physically bind to key transcription factors for cellular proliferation, including NF-Y, p53, and sp1, indicating that such RNA transcripts may function as decoy targets or traps for NF-Y and thus inhibit the growth of human cancer cells. Indeed, short U3 oligodeoxynucleotides (ODNs) based on these RNA sequences ably inhibited proliferation of cancer cell lines driven by cyclins B1/B2, the gene targets of NF-Y.
Collapse
|