1
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
2
|
Krauter S, Büscher N, Bräuchle E, Ortega Iannazzo S, Penner I, Krämer N, Gogesch P, Thomas S, Kreutz M, Dejung M, Freiwald A, Butter F, Waibler Z, Plachter B. An Attenuated Strain of Human Cytomegalovirus for the Establishment of a Subviral Particle Vaccine. Vaccines (Basel) 2022; 10:vaccines10081326. [PMID: 36016214 PMCID: PMC9413975 DOI: 10.3390/vaccines10081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe disease conditions either following congenital transmission of the virus or viral reactivation in immunosuppressed individuals. Consequently, the establishment of a protective vaccine is of high medical need. Several candidates have been tested in preclinical and clinical studies, yet no vaccine has been licensed. Subviral dense bodies (DB) are a promising vaccine candidate. We have recently provided a GMP-compliant protocol for the production of DB, based on a genetically modified version of the HCMV laboratory strain Towne, expressing the pentameric complex of envelope protein gH-gL-pUL128-131 (Towne-UL130rep). In this work, we genetically attenuated Towne-UL130rep by abrogating the expression of the tegument protein pUL25 and by fusing the destabilizing domain ddFKBP to the N-terminus of the IE1- and IE2-proteins of HCMV. The resulting strain, termed TR-VAC, produced high amounts of DB under IE1/IE2 repressive conditions and concomitant supplementation of the viral terminase inhibitor letermovir to the producer cell culture. TR-VAC DB retained the capacity to induce neutralizing antibodies. A complex pattern of host protein induction was observed by mass spectrometry following exposure of primary human monocytes with TR-VAC DB. Human monocyte-derived dendritic cells (DC) moderately increased the expression of activation markers and MHC molecules upon stimulation with TR-VAC DB. In a co-culture with autologous T cells, the TR-VAC DB-stimulated DC induced a robust HCMV-specific T cell-activation and –proliferation. Exposure of donor-derived monocytic cells to DB led to the activation of a rapid innate immune response. This comprehensive data set thus shows that TR-VAC is an optimal attenuated seed virus strain for the production of a DB vaccine to be tested in clinical studies.
Collapse
Affiliation(s)
- Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Eric Bräuchle
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Samira Ortega Iannazzo
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nadine Krämer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Patricia Gogesch
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Simone Thomas
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Marina Kreutz
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Zoe Waibler
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-179232
| |
Collapse
|
3
|
García-Ríos E, Rodríguez MJ, Terrón MC, Luque D, Pérez-Romero P. Identification and Characterization of Epithelial Cell-Derived Dense Bodies Produced upon Cytomegalovirus Infection. Vaccines (Basel) 2022; 10:vaccines10081308. [PMID: 36016196 PMCID: PMC9412340 DOI: 10.3390/vaccines10081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200-300 nm) compared to fibroblast-derived DB (100-600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Department of Science, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - María Josefa Rodríguez
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - María Carmen Terrón
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - Daniel Luque
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| |
Collapse
|
4
|
STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci U S A 2021; 118:2108631118. [PMID: 34385328 DOI: 10.1073/pnas.2108631118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once inside the host cell, DNA viruses must overcome the physical barrier posed by the nuclear envelope to establish a successful infection. The mechanism underlying this process remains unclear. Here, we show that the herpesvirus exploits the immune adaptor stimulator of interferon genes (STING) to facilitate nuclear import of the viral genome. Following the entry of the viral capsid into the cell, STING binds the viral capsid, mediates capsid docking to the nuclear pore complex via physical interaction, and subsequently enables accumulation of the viral genome in the nucleus. Silencing STING in human cytomegalovirus (HCMV)-susceptible cells inhibited nuclear import of the viral genome and reduced the ensuing viral gene expression. Overexpressing STING increased the host cell's susceptibility to HCMV and herpes simplex virus 1 by improving the nuclear delivery of viral DNA at the early stage of infection. These observations suggest that the proviral activity of STING is conserved and exploited by the herpesvirus family. Intriguingly, in monocytes, which act as latent reservoirs of HCMV, STING deficiency negatively regulated the establishment of HCMV latency and reactivation. Our findings identify STING as a proviral host factor regulating latency and reactivation of herpesviruses.
Collapse
|
5
|
Zimmermann C, Krämer N, Krauter S, Strand D, Sehn E, Wolfrum U, Freiwald A, Butter F, Plachter B. Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release. Autophagy 2020; 17:779-795. [PMID: 32079454 DOI: 10.1080/15548627.2020.1732686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery interacts with HCMV already at the early nuclear stages of particle morphogenesis. The membrane-bound form of LC3 and several autophagy receptors were packaged into extracellular HCMV virions. This suggested that autophagic membranes were included during secondary envelopment of HCMV virions. To further address the importance of autophagy in HCMV infection, we generated an HCMV mutant that expressed a dominant-negative version of the protease ATG4B (BAD-ATG4BC74A). The proteolytic activity of ATG4B is required for LC3 cleavage, priming it for membrane conjugation. Surprisingly, both genome replication and virus release were enhanced in cells infected with BAD-ATG4BC74A, compared to control strains. These results show that autophagy operates as an antiviral process during HCMV infection but is dispensable for secondary HCMV particle envelopment.Abbreviations: ATG: autophagy-related; BAC: bacterial artificial chromosome; BECN1: beclin 1; CPE: cytopathic effect; cVACs: cytoplasmic viral assembly compartments; d.p.i.: days post-infection; DB: dense body; EBV: Epstein-Barr virus; galK: galactokinase; HCMV: human cytomegalovirus; HFF: human foreskin fibroblasts; IE: immediate-early; IRS: internal repeat short; LC3: MAP1LC3A/B; m.o.i.; multiplicity of infection; MCP: major capsid protein; Pp: phosphoprotein; sCP/UL48a: smallest capsid protein; TRS: terminal repeat short; UL: unique long; US: unique short.
Collapse
Affiliation(s)
- Christine Zimmermann
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Krämer
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dennis Strand
- I. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Sehn
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
7
|
Pan J, Wang X, Li D, Li J, Jiang Z. MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem 2019; 166:107-113. [PMID: 31143937 DOI: 10.1093/jb/mvz038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to investigate the effect of mesenchymal stem cells (MSCs) on the angiogenesis of human umbilical vein endothelial cells (HUVECs). MSCs were subconjunctival injected into rat corneal alkali burn models. Their impacts on the degree of corneal neovascularization (CNV) and corneal opacity were evaluated at 3, 6, 9 and 12 days after injection. An in vitro experiment of MSCs affecting HUVECs angiogenesis was performed and evaluated using the tube formation assay. The results showed that both CNV and corneal opacity were decreased in rats after MSCs injection. In HUVECs, angiogenesis of cells was inhibited by miR-211 overexpression. miR-211 negatively regulated Prox1 expression. Knockdown of miR-211 blocked the decrease of Prox1 expression induced by MSCs and the inhibitory effect of MSCs on the angiogenesis of HUVECs. The critical role of miR-211 in MSCs inhibition of corneal angiogenesis was confirmed in rat experiments. We concluded that MSCs inhibited the angiogenesis of HUVEC through miR-211 mediating the down-regulation of Prox1.
Collapse
Affiliation(s)
- Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Xianglong Wang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Dequan Li
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response. J Virol 2019; 93:JVI.00931-19. [PMID: 31189713 DOI: 10.1128/jvi.00931-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.
Collapse
|
9
|
The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation. J Virol 2018; 92:JVI.01180-18. [PMID: 30282718 DOI: 10.1128/jvi.01180-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
The tegument of human cytomegalovirus (HCMV) virions contains proteins that interfere with both the intrinsic and the innate immunity. One protein with a thus far unknown function is pUL25. The deletion of pUL25 in a viral mutant (Towne-ΔUL25) had no impact on the release of virions and subviral dense bodies or on virion morphogenesis. Proteomic analyses showed few alterations in the overall protein composition of extracellular particles. A surprising result, however, was the almost complete absence of pUL26 in virions and dense bodies of Towne-ΔUL25 and a reduction of the large isoform pUL26-p27 in mutant virus-infected cells. pUL26 had been shown to inhibit protein conjugation with the interferon-stimulated gene 15 protein (ISG15), thereby supporting HCMV replication. To test for a functional relationship between pUL25 and pUL26, we addressed the steady-state levels of pUL26 and found them to be reduced in Towne-ΔUL25-infected cells. Coimmunoprecipitation experiments proved an interaction between pUL25 and pUL26. Surprisingly, the overall protein ISGylation was enhanced in Towne-ΔUL25-infected cells, thus mimicking the phenotype of a pUL26-deleted HCMV mutant. The functional relevance of this was confirmed by showing that the replication of Towne-ΔUL25 was more sensitive to beta interferon. The increase of protein ISGylation was also seen in cells infected with a mutant lacking the tegument protein pp65. Upon retesting, we found that pUL26 degradation was also increased when pp65 was unavailable. Our experiments show that both pUL25 and pp65 regulate pUL26 degradation and the pUL26-dependent reduction of ISGylation and add pUL25 as another HCMV tegument protein that interferes with the intrinsic immunity of the host cell.IMPORTANCE Human cytomegalovirus (HCMV) expresses a number of tegument proteins that interfere with the intrinsic and the innate defense mechanisms of the cell. Initial induction of the interferon-stimulated gene 15 protein (ISG15) and conjugation of proteins with ISG15 (ISGylation) by HCMV infection are subsequently attenuated by the expression of the viral IE1, pUL50, and pUL26 proteins. This study adds pUL25 as another factor that contributes to suppression of ISGylation. The tegument protein interacts with pUL26 and prevents its degradation by the proteasome. By doing this, it supports its restrictive influence on ISGylation. In addition, a lack of pUL25 enhances the levels of free ISG15, indicating that the tegument protein may interfere with the interferon response on levels other than interacting with pUL26. Knowledge obtained in this study widens our understanding of HCMV immune evasion and may also provide a new avenue for the use of pUL25-negative strains for vaccine production.
Collapse
|