1
|
Miller JL, Leedale C, Kang D, Lilue J, Harder OE, Niewiesk S. Prostaglandin D2 delays CD8+ T-cell responses and respiratory syncytial virus clearance in geriatric cotton rats. J Virol 2025; 99:e0186324. [PMID: 39818970 PMCID: PMC11852932 DOI: 10.1128/jvi.01863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Respiratory syncytial virus (RSV) infection is associated with increased rates of severe disease, hospitalization, and death in elderly individuals. Clearance of RSV is frequently delayed within this demographic, contributing to the more severe disease course. Geriatric cotton rats mimic this prolonged clearance kinetic and serve as a useful animal model for studying age-associated immunological deficits during RSV infection. Treatment with the cyclooxygenase (COX) inhibitor ibuprofen restores RSV clearance, indicating that inflammation contributes to impaired clearance in geriatric cotton rats. Here, we further characterize a compromised immune response in geriatric cotton rats and identify an inflammatory pathway that contributes to this deficiency. Dendritic cell (DC) activation and migration to mediastinal lymph nodes are decreased during early infection in geriatric cotton rats, resulting in delayed generation of cytotoxic T cells and virus clearance. Prostaglandin D2 (PGD2), which reduces DC migration through the elevation of D-type prostanoid 1 receptor (DP1 receptor), is elevated in the airways of infected geriatric cotton rats. Reducing PGD2 production by inhibiting COX-2 or PGD2 synthase improves RSV clearance kinetics through DC activation and RSV-specific CD8+ T-cell responses in geriatric cotton rats, whereas activation of DP1 receptor through an agonist resulted in delayed viral clearance in adult cotton rats. These results indicate that PGD2 contributes to delayed antigen presentation and CD8+ T-cell responses to RSV in geriatric cotton rats. Inhibiting PGD2 generation or signaling may be a useful mechanism of therapeutic intervention in elderly individuals.IMPORTANCEElderly adults are at increased risk of severe disease resulting from infection with respiratory syncytial virus (RSV), characterized in part by delayed clearance (removal of the virus from airways). Understanding the immunological factors that lead to this delayed clearance may allow for the development of therapies to improve disease outcomes in elderly individuals infected with RSV and other respiratory viruses. Here, we describe an inflammatory pathway in geriatric cotton rats, the preferred small animal laboratory model for RSV, that impairs the generation of an effective immune response. We show that inhibiting this inflammatory pathway in geriatric cotton rats improves immune parameters and speeds clearance of RSV. These results contribute to our understanding of delayed RSV clearance in elderly individuals with possible applications for improving immune responses to RSV in clinical settings.
Collapse
Affiliation(s)
- Jonathan L. Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Danyue Kang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Olivia E. Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Chimeric Measles Virus (MV/RSV), Having Ectodomains of Respiratory Syncytial Virus (RSV) F and G Proteins Instead of Measles Envelope Proteins, Induced Protective Antibodies against RSV. Vaccines (Basel) 2021; 9:vaccines9020156. [PMID: 33669275 PMCID: PMC7920054 DOI: 10.3390/vaccines9020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
In our previous study, fusion (F) or glyco (G) protein coding sequence of respiratory syncytial virus (RSV) was inserted at the P/M junction of the measles AIK-C vector (MVAIK), and the recombinant measles virus induced protective immune responses. In the present study, the ectodomains of measles fusion (F) and hemagglutinin (HA) proteins were replaced with those of RSV F and G proteins, and a chimeric MV/RSV vaccine was developed. It expressed F and G proteins of RSV and induced cytopathic effect (CPE) in epithelial cell lines (Vero, A549, and HEp-2 cells), but not in lymphoid cell lines (B95a, Jurkat, and U937 cells). A chimeric MV/RSV grew similarly to AIK-C with no virus growth at 39 °C. It induced NT antibodies against RSV in cotton rats three weeks after immunization through intramuscular route and enhanced response was observed after the second dose at eight weeks. After the RSV challenge with 106 PFU, significantly lower virus (101.4±0.1 PFU of RSV) was recovered from lung tissue in the chimeric MV/RSV vaccine group than in the MVAIK control group with 104.6±0.2 PFU (p < 0.001) and no obvious inflammatory pathological finding was noted. The strategy of ectodomain replacement in the measles virus vector is expected to lead to the development of safe and effective vaccines for other enveloped viruses.
Collapse
|
4
|
Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020; 56:39-48. [PMID: 32718830 PMCID: PMC7333629 DOI: 10.1016/j.cytogfr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy using tumor-selective, oncolytic viruses is an emerging therapeutic option for solid and hematologic malignancies. A considerable variety of viruses ranging from small picornaviruses to large poxviruses are currently being investigated as potential candidates. In the early days of virotherapy, non-engineered wild-type or vaccine-strain viruses were employed. However, these viruses often did not fully satisfy the major criteria of safety and efficacy. Since the advent of reverse genetics systems for manipulating various classes of viruses, the field has shifted to developing genetically engineered viruses with an improved therapeutic index. In this review, we will summarize the concepts and strategies of multi-level genetic engineering of oncolytic measles virus, a prime candidate for cancer immunovirotherapy. Furthermore, we will provide a brief overview of measles virus-based multimodal combination therapies for improved tumor control and clinical efficacy.
Collapse
Affiliation(s)
- Mathias F Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Elise Jirovec
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Russell Barkley
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Guy Ungerechts
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
5
|
Ito T, Kumagai T, Yamaji Y, Sawada A, Nakayama T. Recombinant Measles AIK-C Vaccine Strain Expressing Influenza HA Protein. Vaccines (Basel) 2020; 8:vaccines8020149. [PMID: 32230902 PMCID: PMC7349030 DOI: 10.3390/vaccines8020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Recombinant measles AIK-C vaccine expressing the hemagglutinin (HA) protein of influenza A/Sapporo/107/2013(H1N1pdm) (MVAIK/PdmHA) was constructed. Measles particle agglutination (PA) and influenza hemagglutinin inhibition (HI) antibodies were induced in cotton rats immunized with MVAIK/PdmHA. Cotton rats immunized with two doses of the HA split vaccine were used as positive controls, and higher HI antibodies were detected 3 weeks after the first dose. Following the challenge of A/California/07/2009(H1N1pdm), higher viral loads (107 TCID50/g) were detected in the lung homogenates of cotton rats immunized with the empty vector (MVAIK) or control groups than those immunized with MVAIK/Pdm HA (103 TCID50/g) or the group immunized with HA split vaccine (105 TCID50/g). Histopathologically, destruction of the alveolar structure, swelling of broncho-epithelial cells, and thickening of the alveolar wall with infiltration of inflammatory cells and HA antigens were detected in lung tissues obtained from non-immunized rats and those immunized with the empty vector after the challenge, but not in those immunized with the HA spilt or MVAIK/PdmHA vaccine. Lower levels of IFN-α, IL-1β, and TNF-α mRNA, and higher levels of IFN-γ mRNA were found in the lung homogenates of the MVAIK/PdmHA group. Higher levels of IFN-γ mRNA were detected in spleen cell culture from the MVAIK/PdmHA group stimulated with UV-inactivated A/California/07/2009(H1N1pdm). In conclusion, the recombinant MVAIK vaccine expressing influenza HA protein induced protective immune responses in cotton rats.
Collapse
Affiliation(s)
- Takashi Ito
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | | | - Yoshiaki Yamaji
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Akihito Sawada
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Tetsuo Nakayama
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
- Correspondence: ; Tel.: +81-3-5791-6269; Fax: +81-3-5791-6130
| |
Collapse
|