1
|
Stanković M, Prokopijević M, Andrić F, Tosti TB, Stevanović J, Stanimirović Z, Radotić K. Investigating the Impact of Nosema Infection in Beehives on Honey Quality Using Fluorescence Spectroscopy and Chemometrics. Foods 2025; 14:598. [PMID: 40002042 PMCID: PMC11853889 DOI: 10.3390/foods14040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the impact of Nosema infection in beehives on the physico-chemical and biochemical properties and spectral characteristics of honey as indicators of honey quality. Comprehensive analyses were performed on honey samples from hives with varying levels of Nosema infection, examining water content, free acidity, optical rotation, electrical conductivity, sugar composition, catalase activity, and pollen content. Honey from highly infected hives showed higher water content (up to 17.3%), lower optical rotation, reduced electrical conductivity, decreased glucose levels, and increased sucrose levels. Principal component analysis (PCA) identified distinct clustering of samples based on infection levels, with changes in the sugar profile, particularly higher phenolic compounds, correlating with increased infection levels. Fluorescence spectroscopy combined with PARAFAC modeling identified proteins and phenolic compounds as key discriminators of honey from infected hives. Correlation and PLS modeling further demonstrated strong relationships between spectral features and honey properties, including catalase activity and pollen content. This research presents a novel approach to evaluating the impact of Nosema infection on honey quality by integrating physico-chemical and biochemical analyses and sugar composition profiling with advanced spectroscopic techniques. These insights are invaluable for improving bee health monitoring practices and advancing sustainability in the beekeeping and honey production industries.
Collapse
Affiliation(s)
- Mira Stanković
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (M.S.); (M.P.)
| | - Miloš Prokopijević
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (M.S.); (M.P.)
| | - Filip Andrić
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Tomislav B. Tosti
- National Institute of the Republic of Serbia, University of Belgrade Institute of Chemistry, Technology and Metallurgy, Studentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Jevrosima Stevanović
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (Z.S.)
| | - Zoran Stanimirović
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (Z.S.)
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (M.S.); (M.P.)
| |
Collapse
|
2
|
Ansaloni LS, Kristl J, Domingues CEC, Gregorc A. An Overview of the Nutritional Requirements of Honey Bees ( Apis mellifera Linnaeus, 1758). INSECTS 2025; 16:97. [PMID: 39859678 PMCID: PMC11766133 DOI: 10.3390/insects16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Honey bees are known for their wide global distribution, their ease of handling, and their economic and ecological value. However, they are often exposed to a wide variety of stress factors. Therefore, it is essential for beekeepers to maintain healthy bee colonies. In this context, a balanced diet is recommended to support the growth of strong and healthy honey bee colonies. The purpose of this review is therefore to provide an overview of the nutritional requirements of Apis mellifera and their importance for the maintenance of healthy bee colonies. An adequate diet includes the consumption of sufficient amounts of proteins, carbohydrates, lipids, amino acids, vitamins, minerals, water, and essential sterols, and a diet based on multi-floral pollen is desirable. However, when honey bee colonies are located near agroecosystems with lower resource diversity, both brood rearing and colony longevity may decrease, making them more susceptible to parasites and diseases. On the other hand, efforts have been made to improve the health of honey bee colonies with the help of nutritional supplements consisting of a variety of components. Nevertheless, studies have shown that even with these supplements, a lack of nutrients can still be an issue for honey bee colonies. Furthermore, future research should focus on identifying nutritional supplements that can better replicate natural diet diversity and assessing long-term effects on honey bee colony resilience, especially in low-flowering areas. This review discusses the interaction between nutrient requirements and the effects of supplements on colony health.
Collapse
Affiliation(s)
- Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (J.K.); (C.E.C.D.); (A.G.)
| | | | | | | |
Collapse
|
3
|
Calderón-Fallas RA, van Veen JW, Olate-Olave VR, Verde M, Doorn M, Vallejos L, Orozco-Delgado JV. Africanized honey bee colonies in Costa Rica: first evidence of its management, brood nest structure and factors associated with varroa mite infestation. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:369-384. [PMID: 38485887 DOI: 10.1007/s10493-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/30/2023] [Indexed: 04/23/2024]
Abstract
Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.
Collapse
Affiliation(s)
- Rafael A Calderón-Fallas
- Programa Integrado de Patología Apícola, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Heredia, Costa Rica.
| | - Johan W van Veen
- Programa Regional de Apicultura y Meliponicultura, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Heredia, Costa Rica
| | - Verónica R Olate-Olave
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Mayda Verde
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | - Marnix Doorn
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | - Leslie Vallejos
- UC Davis Chile Life Science Innovation Center, Santiago, Chile
| | | |
Collapse
|
4
|
van Dooremalen C, Ulgezen ZN, Dall’Olio R, Godeau U, Duan X, Sousa JP, Schäfer MO, Beaurepaire A, van Gennip P, Schoonman M, Flener C, Matthijs S, Claeys Boúúaert D, Verbeke W, Freshley D, Valkenburg DJ, van den Bosch T, Schaafsma F, Peters J, Xu M, Le Conte Y, Alaux C, Dalmon A, Paxton RJ, Tehel A, Streicher T, Dezmirean DS, Giurgiu AI, Topping CJ, Williams JH, Capela N, Lopes S, Alves F, Alves J, Bica J, Simões S, Alves da Silva A, Castro S, Loureiro J, Horčičková E, Bencsik M, McVeigh A, Kumar T, Moro A, van Delden A, Ziółkowska E, Filipiak M, Mikołajczyk Ł, Leufgen K, De Smet L, de Graaf DC. Bridging the Gap between Field Experiments and Machine Learning: The EC H2020 B-GOOD Project as a Case Study towards Automated Predictive Health Monitoring of Honey Bee Colonies. INSECTS 2024; 15:76. [PMID: 38276825 PMCID: PMC10816039 DOI: 10.3390/insects15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.
Collapse
Affiliation(s)
| | - Zeynep N. Ulgezen
- Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | | | - Ugoline Godeau
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 84914 Avignon, France
| | | | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Marc O. Schäfer
- Friedrich-Loeffler-Institut, Bundesforschunginstitut für Tiergesundheit, 17493 Greifswald-Insel Riems, Germany
| | | | - Pim van Gennip
- Stichting BEEP, 3972 LK Driebergen-Rijsenburg, The Netherlands
| | | | - Claude Flener
- Suomen Mehiläishoitajain Liitto, 00130 Helsinki, Finland
| | | | | | | | | | | | | | - Famke Schaafsma
- Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Peters
- Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Mang Xu
- Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yves Le Conte
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 84914 Avignon, France
| | - Cedric Alaux
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 84914 Avignon, France
| | - Anne Dalmon
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 84914 Avignon, France
| | - Robert J. Paxton
- Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany
| | - Anja Tehel
- Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany
| | - Tabea Streicher
- Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany
| | - Daniel S. Dezmirean
- Universitatea de Stiinte Agricole si Medicina Veterinara Cluj Napoca, 400372 Cluj Napoca, Romania
| | - Alexandru I. Giurgiu
- Universitatea de Stiinte Agricole si Medicina Veterinara Cluj Napoca, 400372 Cluj Napoca, Romania
| | | | | | - Nuno Capela
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sara Lopes
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Fátima Alves
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Joana Alves
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Bica
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Simões
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Eva Horčičková
- Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Martin Bencsik
- The Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Adam McVeigh
- The Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tarun Kumar
- The Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Arrigo Moro
- Institute of Bee Health, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Peña-Chora G, Toledo-Hernández E, Sotelo-Leyva C, Damian-Blanco P, Villanueva-Flores AG, Alvarez-Fitz P, Palemón-Alberto F, Ortega-Acosta SÁ. Presence and distribution of pests and diseases of Apis mellifera (Hymenoptera: Apidae) in Mexico: a review. THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2023.2182920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- G. Peña-Chora
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - E. Toledo-Hernández
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - C. Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - P. Damian-Blanco
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - A. G. Villanueva-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - P. Alvarez-Fitz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - F. Palemón-Alberto
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Iguala de la Independencia, México
| | - S. Á. Ortega-Acosta
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Iguala de la Independencia, México
| |
Collapse
|
7
|
Yazlovytska LS, Karavan VV, Domaciuk M, Panchuk II, Borsuk G, Volkov RA. Increased survival of honey bees consuming pollen and beebread is associated with elevated biomarkers of oxidative stress. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1098350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionSignificant losses of honey bee colonies have been observed worldwide in recent decades. Inadequate nutrition is considered to be one of the factors that can reduce honey bee resistance to abiotic and biotic environmental stresses. Accordingly, we assessed the impact of food composition on worker bee survival.MethodsBees in cages were fed six different diets, and then their survival, levels of thiobarbituric acid reactive substances and protein carbonyl groups, catalase and lysozyme activities were evaluated.Results and DiscussionAfter 17 days of feeding, the lowest mortality was observed in the group of bees that received sucrose solution with the addition of willow pollen or artificial rapeseed beebread or artificial willow beebread (diets 4–6). The highest mortality was found in bees that consumed only sucrose solution (diet 1) or the sucrose solution supplemented with a mixture of amino acids (diet 2), which can be explained by the lack of vitamins and microelements in these diets. In the group of bees that received the sucrose solution with rapeseed pollen (diet 3), mortality was intermediate. To check whether the decrease in insect survival could be related to oxidative damage, we evaluated biomarkers of oxidative stress. Consumption of pollen (diets 3 and 5) and artificial beebread (diets 4 and 6) enhances protein carbonylation in worker bees. Feeding bees artificial beebread also resulted in increase in lipid peroxidation and catalase activity, which is probably due to the presence of hydrogen peroxide in the honey contained in beebread. Remarkably, the increase in biomarkers of oxidative stress was not accompanied by adverse but positive effects on insect survival. A lack of amino acids and proteins in the diet 1 did not cause oxidative stress, but led to an increase in lysozyme activity in hemolymph, a biomarker of immune system status. In conclusion, we believe that the increase in oxidative stress biomarkers we found do not indicate oxidative damage, but rather reflect the changes in redox balance due to consumption of certain dietary options.
Collapse
|