1
|
Lindhaus H, Bischoff H, Harms M, Menke T, Helmer C, Hennig-Pauka I. Comparison of molecular serotyping methods for Actinobacillus pleuropneumoniae and analysis of atypical serotypes detected in routine diagnostics. J Microbiol Methods 2025; 232-234:107132. [PMID: 40245988 DOI: 10.1016/j.mimet.2025.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Clinical outbreaks due to Actinobacillus pleuropneumoniae (APP) and subclinical infections have high impact on swine health status worldwide although several commercial vaccines are available. Autogenous vaccination programs are implemented when APP outbreaks occur in commercially vaccinated herds. The identification and characterization of the involved APP serotypes is therefore crucial for the implementation of preventive strategies and antimicrobial usage reduction on the farm. Interpretation of serotyping results obtained by different methods might be difficult in case of mismatching results or untypable APP isolates. In this study results of two routine serotyping methods- a capsular gene based and an apx toxin gene PCR- were compared in 151 APP field and 19 APP reference strains. APP species was identified after bacterial culture by MALDI-TOF-MS followed by serotyping. Toxin profiles were not in accordance with the serotype defined by capsule gene PCR in 37 % of APP field strains which were grouped in those with (1) atypical capsule (cps) gene patterns (22 %) and those with (2) atypical apxIV toxin gene length (78 %). Selected atypical APP strains were further analysed by whole genome sequencing. The toxin gene-based PCR robustly identified the apxI-III toxin genes in all strains and revealed highly variable apxIV toxin gene patterns. For thirteen isolates a cps-gene type 6 and apxIV toxin gene pattern of serotype 2/8/15 could be confirmed via WGS. For three serotype 9/11 isolates the failure of the cps gene typing was found to be due to a deletion at the 3' of the cpsF gene. A standardized, precise description of the apx-toxin gene pattern as well as the cps-gene-based serotype for APP strains can be recommended (e.g. APP cps type 2, apx gene profile apxIB, apxII, apxIII).
Collapse
Affiliation(s)
- Henning Lindhaus
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany; Tieraerztliche Praxis Schoeppingen, Ebbinghoff 28, 48624 Schoeppingen, Germany.
| | - Henning Bischoff
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany; Genovo GmbH, Kirchstrasse 3, 26197 Grossenkneten, Germany
| | - Madita Harms
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Theresa Menke
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Carina Helmer
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
2
|
Ke CH, Lai PY, Hsu FY, Hsueh PR, Chiou MT, Lin CN. Antimicrobial susceptibility and resistome of Actinobacillus pleuropneumoniae in Taiwan: a next-generation sequencing analysis. Vet Q 2024; 44:1-13. [PMID: 38688482 PMCID: PMC11064736 DOI: 10.1080/01652176.2024.2335947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pan-Yun Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Feng-Yang Hsu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Huang J, Kang W, Yi D, Zhu S, Xiang Y, Liu C, Li H, Dai D, Su J, He J, Liang Z. Intranasal B5 promotes mucosal defence against Actinobacillus pleuropneumoniae via ameliorating early immunosuppression. Virulence 2024; 15:2316459. [PMID: 38378464 PMCID: PMC10880497 DOI: 10.1080/21505594.2024.2316459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is an important pathogen of the porcine respiratory disease complex, which leads to huge economic losses worldwide. We previously demonstrated that Pichia pastoris-producing bovine neutrophil β-defensin-5 (B5) could resist the infection by the bovine intracellular pathogen Mycobacterium bovis. In this study, the roles of synthetic B5 in regulating mucosal innate immune response and protecting against extracellular APP infection were further investigated using a mouse model. Results showed that B5 promoted the production of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and interferon (IFN)-β in macrophages as well as dendritic cells (DC) and enhanced DC maturation in vitro. Importantly, intranasal B5 was safe and conferred effective protection against APP via reducing the bacterial load in lungs and alleviating pulmonary inflammatory damage. Furthermore, in the early stage of APP infection, we found that intranasal B5 up-regulated the secretion of TNF-α, IL-1β, IL-17, and IL-22; enhanced the rapid recruitment of macrophages, neutrophils, and DC; and facilitated the generation of group 3 innate lymphoid cells in lungs. In addition, B5 activated signalling pathways associated with cellular response to IFN-β and activation of innate immune response in APP-challenged lungs. Collectively, B5 via the intranasal route can effectively ameliorate the immune suppression caused by early APP infection and provide protection against APP. The immunization strategy may be applied to animals or human respiratory bacterial infectious diseases. Our findings highlight the potential importance of B5, enhancing mucosal defence against intracellular bacteria like APP which causes early-phase immune suppression.
Collapse
Affiliation(s)
- Jingsheng Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weichao Kang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Yi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuxin Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yifei Xiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chengzhi Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jieyu Su
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
To H, Tsutsumi N, Kon M, Kawashima N, Koike F, Lacouture S, Gottschalk M, Frey J, Nagai S. A new subtype of serovar 6, K6b:O3, of Actinobacillus pleuropneumoniae based on genotypic analysis. Vet Microbiol 2024; 298:110291. [PMID: 39488134 DOI: 10.1016/j.vetmic.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of fifteen field isolates of Actinobacillus pleuropneumoniae, including eleven North American and four Japanese ones, reactive to antisera against serovars 3, 6, 8 and/or 15. Ten North American isolates amplified a serovar 6-indicative fragment derived from the capsular loci, whereas one North American isolate and all four Japanese isolates amplified the serovar 6-indicative fragment as well as the serovar 3-indicative fragment. The five isolates producing a 3/6 banding pattern contain a type I CPS locus, named K6b, similar to serovar 6, but with differences in the cpxABCD and cpsABC gene sequences and the length of intergenic regions (modF-cpxA, and cpsC-cpsD). The main difference found between the K6 and K6b cps genes is a loss of function of a 113 AA UDP-glycosyltransferase found in type 6b due to the amino acid substitutions in the C-terminal domain of Cps6bA. Additionally, the isolates harbor a LPS O-Ag locus highly identical to those of field and reference strains of serovars 3, 8, 15, 17 and 19 but different from that of serovar 6. Taken together, our results indicate the existence of a subtype of A. pleuropneumoniae, serovar 6, that we called "K6b:O3'', and we propose isolate EH1248 as the reference strain.
Collapse
Affiliation(s)
- Ho To
- Nisseiken Co., Ltd., Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | | | - Michiha Kon
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | | | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nisseiken Co., Ltd., Tokyo, Japan; Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
5
|
Cuccato M, Divari S, Ciaramita S, Sereno A, Campelli D, Biolatti PG, Biolatti B, Meliota F, Bollo E, Cannizzo FT. Actinobacillus pleuropneumoniae Serotypes by Multiplex PCR Identification and Evaluation of Lung Lesions in Pigs from Piedmont (Italy) Farms. Animals (Basel) 2024; 14:2255. [PMID: 39123782 PMCID: PMC11311043 DOI: 10.3390/ani14152255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine pleuropneumonia (PPP) is one of the main causes leading to massive losses in the pig industry, with high economic impacts. Among different etiological agents, Actinobacillus pleuropneumoniae (APP) is responsible for severe fibrinous-necrotizing pleuropneumonia. A total of 19 different APP serotypes are currently recognized. This study aimed to identify APP serotypes isolated from pneumonic lesions in naturally infected and dead pigs in the Piedmont Region and to describe lesions. A total of 107 dead pigs with a suspected PPP diagnosis were included in this study. Lungs were evaluated using gross-pathology scoring systems, histopathology, and APP isolation and serotypes identification by multiplex PCR were conducted. Gross lung lesions were mainly represented by fibrinous pneumonia and pleuropneumonia. APP was isolated in 20/107 (18.7%) samples. PCR indicated APP DNA presence in 53/107 (49.5%) of lung samples. The most observed serotypes were serotype 2 in 24/53 (45.3%) and serotype 6 in 13/53 (24.5%) samples. Moreover, multiplex PCR results suggested a coinfection of different serotypes in five samples. This study emphasizes the importance of an integrated approach, utilizing various techniques, such as gross- and histopathology, and bacteriological culture and PCR, to enhance the diagnosis of APP infections.
Collapse
Affiliation(s)
- Matteo Cuccato
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Silvia Ciaramita
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Alessandra Sereno
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | | | | | | | | | - Enrico Bollo
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Francesca Tiziana Cannizzo
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| |
Collapse
|
6
|
Vilaró A, Karstensen KT, Cavaco LM, Angen Ø, Solé E, Seró I, Novell E, Enrique-Tarancón V, Guitart-Matas J, Migura-Garcia L, Fraile L. An investigation of the transmission of Actinobacillus pleuropneumoniae within vertically integrated systems using whole genome sequencing. Vet Microbiol 2024; 295:110157. [PMID: 38917664 DOI: 10.1016/j.vetmic.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/01/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Actinobacillus pleuropneumoniae (APP) causes significant economic losses to the swine industry. Antibiotic treatment can be challenging due to its clinical urgency and the turnover of antimicrobial susceptibility results from the diagnostic laboratory. The aim of this study was to evaluate the vertical transmission of APP within integrated systems as a criterion for optimising antimicrobial treatment in the field, using whole genome sequencing (WGS). Additionally, the genetic variability of Spanish APP isolates has been assessed to decipher antimicrobial resistance (AMR) determinants, toxin presence, serotype, and phenotype/genotype concordance of AMR. A total of 169 isolates from clinical cases of porcine pleuropneumonia with known antimicrobial susceptibility profiles were sequenced. Additionally, 48 NCBI assemblies were included to perform a phylogenetic analysis. Phylogenetic analysis revealed high association between phylogenetic clusters, serotypes, and presence of toxins that are associated within vertically integrated systems by its epidemiological link. Concordance between presence of AMR determinants (genotype) vs in-vitro antimicrobial susceptibility pattern (phenotype) was acceptable for amoxicillin, florfenicol, oxytetracycline, and enrofloxacin using epidemiological cut-off values (ECOFFs), but low concordance was observed for doxycycline and trimethoprim-sulfamethoxazole (T/S). On the other hand, using CLSI clinical breakpoints (CBPs), concordance was acceptable for florfenicol and enrofloxacin and not evaluated for doxycycline, oxytetracycline, trimethoprim-sulfamethoxazole (T/S), and amoxicillin because no CBP are available for them. Finally, WGS has demonstrated the clonality between isolates that shared a common origin (grandmother's farm) and resistance phenotype, suggesting vertical transmission of this pathogen and supporting the use of the epidemiological approach as a good criterion to optimise the antimicrobial use.
Collapse
Affiliation(s)
- Anna Vilaró
- Grup de Sanejament Porcí (GSP), Partida Caparrella 97C, Lleida 25192, Spain
| | - Kasper T Karstensen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Lina M Cavaco
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Emma Solé
- Grup de Sanejament Porcí (GSP), Partida Caparrella 97C, Lleida 25192, Spain
| | - Ingrid Seró
- Grup de Sanejament Porcí (GSP), Partida Caparrella 97C, Lleida 25192, Spain
| | - Elena Novell
- Grup de Sanejament Porcí (GSP), Partida Caparrella 97C, Lleida 25192, Spain
| | | | - Judith Guitart-Matas
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; IRTA, Animal Health Program, Animal Health Research Centre (CReSA), Collaborating Centre of the World Organisation for Animal Health for research and control of emerging and re-emerging pig diseases in Europe, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lourdes Migura-Garcia
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; IRTA, Animal Health Program, Animal Health Research Centre (CReSA), Collaborating Centre of the World Organisation for Animal Health for research and control of emerging and re-emerging pig diseases in Europe, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lorenzo Fraile
- Department of Animal Science, ETSEA, Universitat de Lleida-AGROTECNIO-CERCA Centre, Lleida 25198, Spain.
| |
Collapse
|
7
|
Bui DT, Lee YS, Kuo TF, Chen ZW, Yang WC. Novel Experimental Mouse Model to Study the Pathogenesis and Therapy of Actinobacillus pleuropneumoniae Infection. Pathogens 2024; 13:412. [PMID: 38787263 PMCID: PMC11123673 DOI: 10.3390/pathogens13050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections.
Collapse
Affiliation(s)
- Duc-Thang Bui
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-San Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli County 350, Taiwan;
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
- Department of Life Sciences, National Taiwan Ocean University, Keelung City 202, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung City 404, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung City 404, Taiwan
| |
Collapse
|
8
|
To H, Maldonado J, Tsutsumi N, Gottschalk M, Frey J, Nagai S. Characterization of Actinobacillus pleuropneumoniae biovar 2 isolates reportedly reacted with the serovar 4 antiserum, and development of a multiplex PCR for O-antigen typing. Vet Microbiol 2024; 291:110030. [PMID: 38428226 DOI: 10.1016/j.vetmic.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of twelve Spanish field isolates of Actinobacillus pleuropneumoniae biovar 2, eleven of them previously typed serologically as serovar 4 and one non-typable (NT) (Maldonado et al., 2009, 2011). These isolates have the common core genes of the type I CPS locus, sharing >98% identity with those of serovar 2. However, the former possesses the O-Ag locus as serovar 4, and the latter possesses the O-Ag locus as serovar 7. The main difference found between the CPS loci of the 11 isolates and that of serovar 2 reference strain S1536 are two deletions, one of an 8 bp sequence upstream of the coding sequence and one of 111 bp sequence at the 5' end of the cps2G gene. The deletion mutations mentioned lead to a defect in the production of CPS in these isolates, which contributed to their previous mis-identification. In order to complement the serotyping of A. pleuropneumoniae in diagnostics and epidemiology, we have developed a multiplex PCR for the comprehensive O-Ag typing of all A. pleuropneumoniae isolates.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | - Jaime Maldonado
- Diagnostic Laboratory, Laboratorios HIPRA S.A., Paratge Arbusset s/n, Girona 17170, Spain
| | | | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
9
|
Tenk M, Tóth G, Márton Z, Sárközi R, Szórádi A, Makrai L, Pálmai N, Szalai T, Albert M, Fodor L. Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs. Vet Sci 2024; 11:62. [PMID: 38393080 PMCID: PMC10892955 DOI: 10.3390/vetsci11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Different virulence variants of A. pleuropneumoniae are involved in the etiology of porcine pleuropneumonia. The purpose of the present trial was examination of the virulence of the Actinobacillus pleuropneumoniae A-85/14 strain, the type strain of serovar 16, in an animal challenge experiment. Thirty 12-week-old piglets seronegative for A. pleuropneumoniae were allocated into three trial groups each of 10 animals, and they were infected intranasally with 106, 107, or 108 colony forming units (cfu) of the strain, respectively. Clinical signs were recorded twice a day, and the animals were euthanized 6 days after the infection. Typical clinical signs and postmortem lesions of porcine pleuropneumonia were seen in the animals of each trial group; however, they were generally mild, and no significant differences could be seen between the three groups. Even 106 colony forming units of A. pleuropneumoniae A-85/14 strain could induce clinical signs and lesions. Based on these results, the type strain of serovar 16 of A. pleuropneumoniae must be regarded as a typical pathogenic strain of the species.
Collapse
Affiliation(s)
- Miklós Tenk
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Gergely Tóth
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Zsuzsanna Márton
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Rita Sárközi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Alejandra Szórádi
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| | - Nimród Pálmai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Tamás Szalai
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - Mihály Albert
- CEVA-Phylaxia Veterinary Biologicals Co., Ltd., Szállás u. 5, H-1107 Budapest, Hungary; (M.T.); (Z.M.); (A.S.); (N.P.); (T.S.); (M.A.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, H-1143 Budapest, Hungary; (G.T.); (R.S.); (L.M.)
| |
Collapse
|
10
|
To H, Tsutsumi N, Ito S, Gottschalk M, Nagai S. Characterization of nonencapsulated Actinobacillus pleuropneumoniae serovar K12:O3 isolates. J Vet Diagn Invest 2023; 35:766-771. [PMID: 37542385 PMCID: PMC10621555 DOI: 10.1177/10406387231190875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
Three Actinobacillus pleuropneumoniae isolates from clinical cases of porcine pleuropneumonia were positive by capsular serovar 12-specific PCR assay, but not reactive to antiserum prepared against serovar 12 using the rapid slide agglutination (RSA) test. The isolates were positive for apxIICA, apxIIICA, apxIBD, apxIIIBD, and apxIVA in the PCR toxin gene assay, which is the profile seen in serovars 2, 4, 6, 8, and 15, and reacted with antisera against serovars 3, 6, 8, 15, and 17. Nucleotide sequence analysis revealed that genes involved in the biosynthesis of capsular polysaccharide of the 3 isolates were identical or nearly identical to those of serovar 12. However, genes involved in the biosynthesis of O-polysaccharide of the 3 isolates were highly similar to those of reference strains of serovars 3, 6, 8, 15, 17, and 19. In agreement with results from the RSA test, transmission electron microscopic analysis confirmed the absence of detectable capsular material in the 3 isolates. The existence of nonencapsulated A. pleuropneumoniae serovar K12:O3 would hamper precise serodetection.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, Tokyo, Japan
- Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Vietnam
| | | | - Soma Ito
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Shinya Nagai
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
11
|
TO H, KONNAI M, TESHIMA K, TSUTSUMI N, ITO S, SATO M, SHIBUYA K, NAGAI S. Pulmonary lesions with asteroid bodies in a pig experimentally infected with Actinobacillus pleuropneumoniae serovar 15. J Vet Med Sci 2023; 85:1131-1135. [PMID: 37612056 PMCID: PMC10600533 DOI: 10.1292/jvms.23-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Five pigs experimentally infected with Actinobacillus pleuropneumoniae serovar 15 isolated in our previous study were pathologically examined. One pig died at 2 days post inoculation (dpi) and four pigs were euthanized at 7 dpi. Autopsy revealed fibrinohemorrhagic pleuropneumonia in all pigs. Histopathologically, the lesions were characterized by extensive hemorrhage and necrosis, fibrin deposition, and multifocal abscesses composed of numerous neutrophils including oat cells and numerous Gram-negative bacilli. In one survived pig, asteroid body formation was confirmed in the lung. The bacteria within the abscesses and asteroid bodies were immunohistochemically positive for antiserum raised against A. pleuropneumoniae serovar 15. This is the first report describing porcine pleuropneumonia with asteroid bodies in a pig experimentally infected with A. pleuropneumoniae serovar 15.
Collapse
Affiliation(s)
- Ho TO
- Nippon Institute for Biological Science, Tokyo, Japan
- Faculty of Agriculture and Aquaculture, University of Cuu
Long, Vinh Long, VietNam
| | - Masaki KONNAI
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Kaho TESHIMA
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | - Soma ITO
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Masumi SATO
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | - Shinya NAGAI
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
12
|
Somogyi Z, Mag P, Simon R, Kerek Á, Makrai L, Biksi I, Jerzsele Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis Isolated from Pigs in Hungary between 2018 and 2021. Antibiotics (Basel) 2023; 12:1298. [PMID: 37627719 PMCID: PMC10451952 DOI: 10.3390/antibiotics12081298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method. In our study, we measured the MIC values of 164 Actinobacillus pleuropneumoniae, 65 Pasteurella multocida, and 118 Streptococcus suis isolates isolated from clinical cases against the following antibacterial agents: amoxicillin, ceftiofur, cefquinome, oxytetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, tulathromycin, lincomycin, tiamulin, florfenicol, colistin, enrofloxacin, and sulfamethoxazole-trimethoprim. Outstanding efficacy against A. pleuropneumoniae isolates was observed with ceftiofur (100%) and tulathromycin (100%), while high levels of resistance were observed against cefquinome (92.7%) and sulfamethoxazole-trimethoprim (90.8%). Ceftiofur (98.4%), enrofloxacin (100%), florfenicol (100%), and tulathromycin (100%) were found to be highly effective against P. multocida isolates, while 100% resistance was detected against the sulfamethoxazole-trimethoprim combination. For the S. suis isolates, only ceftiofur (100%) was not found to be resistant, while the highest rate of resistance was observed against the sulfamethoxazole-trimethoprim combination (94.3%). An increasing number of studies report multi-resistant strains of all three pathogens, making their monitoring a high priority for animal and public health.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - László Makrai
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary;
- SCG Diagnostics Ltd., HU-2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|