1
|
Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, Salleh WNW, Ismail AF. Harnessing the photocatalytic potential of bismuth ferrite-activated carbon nanocomposite (BFO-AC) for Staphylococcus aureus decontamination under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16629-16641. [PMID: 38321283 DOI: 10.1007/s11356-024-32261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
Collapse
Affiliation(s)
- Nur Atiqah Daub
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Shakhawan Ahmad Mhamad
- Chemistry Department, College of Education, University of Sulaimany, 46001, Sulaimani, Kurdistan, Iraq
| | - Dayang Norafizan Awang Chee
- Faculty Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Gupta V, Yadav RK, Umar A, Ibrahim AA, Singh S, Shahin R, Shukla RK, Tiwary D, Dwivedi DK, Singh AK, Singh AK, Baskoutas S. Highly Efficient Self-Assembled Activated Carbon Cloth-Templated Photocatalyst for NADH Regeneration and Photocatalytic Reduction of 4-Nitro Benzyl Alcohol. Catalysts 2023. [DOI: 10.3390/catal13040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
This manuscript emphasizes how structural assembling can facilitate the generation of solar chemicals and the synthesis of fine chemicals under solar light, which is a challenging task via a photocatalytic pathway. Solar energy utilization for pollution prevention through the reduction of organic chemicals is one of the most challenging tasks. In this field, a metal-based photocatalyst is an optional technique but has some drawbacks, such as low efficiency, a toxic nature, poor yield of photocatalytic products, and it is expensive. A metal-free activated carbon cloth (ACC)–templated photocatalyst is an alternative path to minimize these drawbacks. Herein, we design the synthesis and development of a metal-free self-assembled eriochrome cyanine R (EC-R) based ACC photocatalyst (EC-R@ACC), which has a higher molar extinction coefficient and an appropriate optical band gap in the visible region. The EC-R@ACC photocatalyst functions in a highly effective manner for the photocatalytic reduction of 4-nitro benzyl alcohol (4-NBA) into 4-amino benzyl alcohol (4-ABA) with a yield of 96% in 12 h. The synthesized EC-R@ACC photocatalyst also regenerates reduced forms of nicotinamide adenine dinucleotide (NADH) cofactor with a yield of 76.9% in 2 h. The calculated turnover number (TON) of the EC-R@ACC photocatalyst for the reduction of 4-nitrobenzyl alcohol is 1.769 × 1019 molecules. The present research sets a new benchmark example in the area of organic transformation and artificial photocatalysis.
Collapse
|
3
|
Zuo M, Moztahida M, Lee DS, Yi S. Synthesis of enhanced corrosion resistant Fe-B-C-Ti amorphous ribbons and evaluation of their photodegradation efficiency under light irradiation. CHEMOSPHERE 2022; 287:132175. [PMID: 34826903 DOI: 10.1016/j.chemosphere.2021.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fe-based amorphous alloys have been found to be very efficient in the degradation of water pollutants due to their unique atomic arrangements with long-range disordered structure. In this work, Fe-B-C-Ti amorphous ribbons were successfully synthesized and showed high catalytic efficiency in the degradation of methylene blue (MB) under simulated sunlight and across a wide pH range. The catalytic efficiency was evaluated under different conditions to optimize the degradation performance. The amorphous ribbon Fe75B10C10Ti5 was found to exhibit the highest photocatalytic activity as explained by its optical and photoelectrochemical properties. It can degrade MB completely with low Fe-leaching and significant recyclability at pH close to a neutral range (pH 5). The degradation mechanisms can be explained in terms of photocatalytic activity along with the galvanic cell effect which contributed to the efficient MB degradation. This work provides a comprehensive idea for the synthesis of amorphous alloys by optimizing their elemental composition and also explains the catalytic activity of partially crystallized regions on the ribbon surface. The significant corrosion resistance and the quick degradation of MB in a wide pH range in a recyclable manner by these easily separable and highly efficient catalysts indicate great potential for their practical application.
Collapse
Affiliation(s)
- Mingqing Zuo
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Mokrema Moztahida
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| | - Seonghoon Yi
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Kang W, Cui Y, Qin L, Yang Y, Zhao Z, Wang X, Liu X. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122499. [PMID: 32208315 DOI: 10.1016/j.jhazmat.2020.122499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Recently, graphene aerogels (GAs) have attracted considerable research attention in oil/water separation owing to their remarkable properties. However, the serious stacking of graphene oxide nanosheets (GO) would lead to low adsorption capacity and poor recyclability. For the first time, with alkaline ammonium citrate as reducing agent and nitrogen source, the point-to-face contact between magnetic carbon nanospheres (MCNS) and graphene sheets was adopted to effectively inhibit the aggregation of graphene sheets. Nitrogen-doped magnetic carbon nanospheres/graphene composite aerogels (MCNS/NGA) were fabricated under weakly alkaline conditions by one-step hydrothermal in-situ electrostatic self-assembling strategy. The aerogels have low density, super-elasticity (up to 95 % compression), high specific surface area (787.92 m2 g-1) and good magnetic properties. Therefore, they exhibit adsorption capacity in the range of 187-537 g g-1 towards various organic solvents and oils, superior to most reported materials to date. In addition, thanks to their good mechanical properties, excellent thermal stability and flame retardancy, they can be regenerated by squeezing, distillation and combustion. More importantly, magnetic control technology can be adopted to realize oriented adsorption and facilitate recycling of organic solvents and oils in extreme environments.
Collapse
Affiliation(s)
- Weiwei Kang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Cui
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zongbin Zhao
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuzhen Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|