1
|
Lei Y, Wang J, Jiang B, Liu H, Lan H, Zhang Y, Gao G. Enhanced photo-Fenton degradation of contaminants in a wide pH range via synergistic interaction between 1T and 2H MoS 2 and copolymer tea polyphenols/polypyrrole. J Colloid Interface Sci 2024; 658:74-89. [PMID: 38100978 DOI: 10.1016/j.jcis.2023.11.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In this study, we present the successful development of a unique photo-Fenton catalyst, 1T-2H MoS2@TP/PPy (MTP), achieved through the coating of a copolymer of tea polyphenol (TP) and polypyrrole (PPy) onto the surface of heterophase molybdenum disulfide (1T-2H MoS2). This innovative approach involves the integration of hydrothermal synthesis with copolymerization techniques. Our strategy utilizes nanoflower-like 1T-2H MoS2 as the foundational framework, which is then enveloped in TP and PPy copolymer. This innovative approach involves the integration of hydrothermal synthesis with copolymerization techniques. Our strategy utilizes nanoflower-like 1T-2H MoS2 as the foundational framework, which is then enveloped in TP and PPy copolymer. This distinctive architecture demonstrates exceptional catalytic performance owing to the hetero-phase entanglement of 1T-2H MoS2, which provides a diverse array of active sites. The coupled structure of TP and iron (TP-Fe2+/Fe3+) effectively overcome the limitation associated with the iron source. The incorporation of PPy not only reduces the recombination of photogenerated electron-hole pairs but also enhances the stability of 1T-2H MoS2. Remarkably, our experiments on the degradation of methylene blue (MB) and tetracycline (TC) degradation demonstrate that TP-Fe2+/Fe3+ significantly expands the pH applicability range of the MTP composite catalyst. Additionally, we examine several factors, including different catalysts, H2O2 addition, variations in light intensity, solution pH, temperature fluctuations, and the role of active species, to comprehensively understand their impact on the photo-Fenton degradation process. In conclusion, MTP composite exhibits robust catalytic stability and demonstrates a broad pH utilization range in the photo-Fenton oxidation process, highlighting its promising potential for a wide range of applications.
Collapse
Affiliation(s)
- Yanhua Lei
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China.
| | - Jie Wang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Bochen Jiang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China; School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226000, China
| | - Hui Liu
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Haifeng Lan
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yuliang Zhang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Guanhui Gao
- Material Science and Nano Engineering Department, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
2
|
An M, Xia W, Cheng K, Zhu J, Yin X, Luo D, Wu J, Xia M. Ingenious use of autocatalytic hydrodeoxygenation for the separation and recovery of oil and iron from rolling oil sludge. ENVIRONMENTAL RESEARCH 2023; 239:117357. [PMID: 37848081 DOI: 10.1016/j.envres.2023.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
This paper introduces a transformative hydrodeoxygenation process for the simultaneous recovery of oil and iron from hazardous rolling oil sludge (ROS). Leveraging the inherent catalytic capabilities of iron/iron oxide nanoparticles in the sludge, our process enables the conversion of fatty acids and esters into hydrocarbons under conditions of 4.5 MPa, 330 °C, and 500 rpm. This reaction triggers nanoparticle aggregation and subsequent separation from the oil phase, allowing for effective resource recovery. In contrast to conventional techniques, this method achieves a high recovery rate of 98.3% while dramatically reducing chemical reagent consumption. The reclaimed petroleum and iron-ready for high-value applications-are worth 3910 RMB/ton. Moreover, the process facilitates the retrieval of nanoscale magnetic Fe and Fe0 particles, and the oil, with an impressive hydrocarbon content of 87.8%, can be further refined. This energy-efficient approach offers a greener, more sustainable pathway for ROS valorization.
Collapse
Affiliation(s)
- Mingze An
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Wangzhe Xia
- Hubei Vocational College of Bio-Technology, Wuhan 430200, China
| | - Kai Cheng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Junjiang Zhu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Dan Luo
- Analytical Application Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD. Wuhan Branch, China
| | - Jianhong Wu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China.
| | - Minggui Xia
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Wan H, Islam MS, Tarannum T, Shi K, Mills R, Yi Z, Fang F, Lei L, Li S, Ormsbee L, Xu Z, Bhattacharyya D. Reactive membranes for groundwater remediation of chlorinated aliphatic hydrocarbons: competitive dechlorination and cost aspects. Sep Purif Technol 2023; 320:123955. [PMID: 38303990 PMCID: PMC10830166 DOI: 10.1016/j.seppur.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate ( k sa ) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged k sa . Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Tahiya Tarannum
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Ke Shi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhiyuan Yi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fumohan Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linfeng Lei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyao Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
4
|
Tan Y, Zhao C, Chen Q, Li L, Wang X, Guo B, Zhang B, Wang X. Heterogeneous Electro-Fenton-Catalyzed Degradation of Rhodamine B by Nano-Calcined Pyrite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4883. [PMID: 36981788 PMCID: PMC10049193 DOI: 10.3390/ijerph20064883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The use of natural pyrite as a catalyst for the treatment of recalcitrant organic wastewater by an electro-Fenton system (pyrite-EF) has recently received extensive attention. To improve the catalytic activity of natural pyrite (Py), magnetic pyrite (MPy), and pyrrhotite (Pyr), they were obtained by heat treatment, and the nanoparticles were obtained by ball milling. They were characterized by X-ray diffraction, X-ray electron spectroscopy, and scanning electron microscopy. The degradation performance of rhodamine B (Rhb) by heterogeneous catalysts was tested under the pyrite-EF system. The effects of optimal pH, catalyst concentration, and current density on mineralization rate and mineralization current efficiency were explored. The results showed that the heat treatment caused the phase transformation of pyrite and increased the relative content of ferrous ions. The catalytic performance was MPy > Py > Pyr, and the Rhb degradation process conformed to pseudo-first-order kinetics. Under the optimum conditions of 1 g L-1 MPy, an initial pH of five, and a current density of 30 mA cm-2, the degradation rate and TOC removal rate of Rhb wastewater reached 98.25% and 77.06%, respectively. After five cycles of recycling, the chemical activity of MPy was still higher than that of pretreated Py. The main contribution to Rhb degradation in the system was •OH radical, followed by SO4•-, and the possible catalytic mechanism of MPy catalyst in the pyrite-EF system was proposed.
Collapse
Affiliation(s)
- Yu Tan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Changsheng Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Luzhen Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinghua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Beibei Guo
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bowei Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaokai Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
5
|
Tang M, Zhang Y. Enhancing the activation of persulfate using nitrogen-doped carbon materials in the electric field for the effective removal of p-nitrophenol. RSC Adv 2021; 11:38003-38015. [PMID: 35498075 PMCID: PMC9044045 DOI: 10.1039/d1ra06691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Degradation of nonbiodegradable organic compounds into harmless substances is one of the main challenges in environmental protection. Electrically-activated persulfate process has served as an efficient advanced oxidation process (AOP) to degrade organic compounds. In this study, we synthesized three nitrogen-doped carbon materials, namely, nitrogen-doped activated carbon plus graphene (NC), and nitrogen-doped activated carbon (NAC), nitrogen-doped graphene (NGE), and three nitrogen-doped carbon material-graphite felt (GF) cathodes. The three nitrogen-doped carbon materials (NC, NGE, NAC) were characterized using X-ray diffraction, Raman spectroscopy, X-ray electron spectroscopy, and nitrogen desorption-adsorption. The electron spin resonance technique was used to identify the presence of hydroxyl radicals (˙OH), sulfate radicals (SO4˙-) and singlet oxygen (1O2) species. The results showed that NC was more conducive for the production of free radicals. In addition, we applied NC-GF to an electro-activated persulfate system with the degradation of p-nitrophenol and investigated its performance for contaminant degradation under different conditions. In general, the nitrogen-doped carbon electrode electro-activated persulfate process is a promising way to treat organic pollutants in wastewater.
Collapse
Affiliation(s)
- Mengdi Tang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yonggang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| |
Collapse
|
6
|
Oh WD, Ho YC, Mohamad M, Ho CD, Ravi R, Lim JW. Systematic Performance Comparison of Fe 3+/Fe 0/Peroxymonosulfate and Fe 3+/Fe 0/Peroxydisulfate Systems for Organics Removal. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5284. [PMID: 34576510 PMCID: PMC8468805 DOI: 10.3390/ma14185284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Activated zero-valent iron (Ac-ZVI) coupled with Fe3+ was employed to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) for acid orange 7 (AO7) removal. Fe3+ was used to promote Fe2+ liberation from Ac-ZVI as an active species for reactive oxygen species (ROS) generation. The factors affecting AO7 degradation, namely, the Ac-ZVI:Fe3+ ratio, PMS/PDS dosage, and pH, were compared. In both PMS and PDS systems, the AO7 degradation rate increased gradually with increasing Fe3+ concentration at fixed Ac-ZVI loading due to the Fe3+-promoted liberation of Fe2+ from Ac-ZVI. The AO7 degradation rate increased with increasing PMS/PDS dosage due to the greater amount of ROS generated. The degradation rate in the PDS system decreased while the degradation rate in the PMS system increased with increasing pH due to the difference in the PDS and PMS activation mechanisms. On the basis of the radical scavenging study, sulfate radical was identified as the dominant ROS in both systems. The physicochemical properties of pristine and used Ac-ZVI were characterized, indicating that the used Ac-ZVI had an increased BET specific surface area due to the formation of Fe2O3 nanoparticles during PMS/PDS activation. Nevertheless, both systems displayed good reusability and stability for at least three cycles, indicating that the systems are promising for pollutant removal.
Collapse
Affiliation(s)
- Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia;
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan;
| | - Rajiv Ravi
- School of Applied Sciences, Faculty of Integrated Life Science, Quest International University, Ipoh 30250, Perak, Malaysia;
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| |
Collapse
|
7
|
Xiong YH, Pei DS. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems. CHEMOSPHERE 2021; 277:130256. [PMID: 33773311 DOI: 10.1016/j.chemosphere.2021.130256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
As emerging contaminants, PAEs (Phthalic Acid Esters or Phthalate Esters) have been extensively utilized in industrial production to soften the rigid plastics (plasticizers), and their related products are widely distributed in our daily life. The PAEs can readily transfer from the products to the surrounding environment due to not being chemically bound to the products. In this study, we analyzed the PAEs' properties, usage, and consumption in the world, as well as toxicity to human beings. As endocrine-disrupting chemicals (EDCs), PAEs can disturb the normal hormones reactions, resulting in developmental and reproductive problems. Thus, we have to concern the removal strategies of PAEs. We summarized two novel approaches, including biochars and persulfate (PS) oxidation for effectively removing PAEs in the literature. Their characteristics, removal mechanisms, and the main impact factors on the removal of PAEs were highlighted. Moreover, transition metal-activated PS showed good performance on PAEs degradation. Furthermore, the synergy of biochars and transition metals-PS can overcome the disadvantages of a single approach, and show better performance on the removal of PAEs. Finally, we put forward vital strategies to update two approaches (including the combined) for enhancing the removal of PAEs. It is expected that the researchers or scientists can get a hint on effectively remediating PAEs-contaminated sites via the biochars' sorption/transition metals-PS or the combined two from this review paper.
Collapse
Affiliation(s)
- Yang-Hui Xiong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|