1
|
Yang Y, Bai W, Gan D, Zhu Y, Li X, Liang C, Xia S. A practical study on the near-zero discharge of rainwater and the collaborative treatment and regeneration of rainwater and sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173137. [PMID: 38740207 DOI: 10.1016/j.scitotenv.2024.173137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Non-conventional water recovery, recycling, and reuse have been considered imperative approaches to addressing water scarcity in China. The objective of this study was to evaluate the technical and economic feasibility of Water Reclamation Plants (WRP) based on an anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) system for unconventional water resource treatment and reuse in towns (domestic sewage and rainwater). Rainwater is collected and stored in the rainwater reservoir through the rainwater pipe network, and then transported to the WRP for treatment and reuse through the rainwater reuse pumping station during the peak water demand period. During a year of operation and evaluation process, a total of 610,000 cubic meters of rainwater were reused, accounting for 10.4 % of the treated wastewater. In the A2O-MBR operation, the average effluent concentrations for COD (chemical oxygen demand), NH4+-N (ammonium), TN (total nitrogen), and TP (total phosphorus) were 14.23 ± 4.07 mg/L, 0.22 ± 0.26 mg/L, 11.97 ± 1.54 mg/L, and 0.13 ± 0.09 mg/L, respectively. The effluent quality met standards suitable for reuse in industrial cooling water or for direct discharge. The WRP demonstrates a positive financial outlook, with total capital and operating costs totaling 0.16 $/m3. A comprehensive cost-benefit analysis indicates a positive net present value for the WRP, and the estimated annualized net profit is 0.024 $/m3. This research has achieved near-zero discharge of wastewater and effective allocation of rainwater resources across time and space.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenlong Bai
- Inner Mongolia Dongyuan Environmental Protection Technology Co., LTD, Inner Mongolia 014399, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Hu X, Zhang S, Liu G, Wang J, Wang Y. Promoting mechanism of nitrogen removal by Fe 3O 4 magnetic particles during the start-up phase in sequencing batch reactor. Bioprocess Biosyst Eng 2024; 47:851-862. [PMID: 38676738 DOI: 10.1007/s00449-024-03006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.
Collapse
Affiliation(s)
- Xiaoyu Hu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shuai Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Yue Wang
- Shuifa Water Holding Group Limited, Jinan, 250000, China
| |
Collapse
|
3
|
Wang Y, Gao W, Lv L, Ma X, Ren Z, Sun L, Liu X, Wang P, Sun Z, Tian Y, Zhang G. Comprehensive carbon footprint analysis of wastewater treatment: A case study of modified cyclic activated sludge technology for low carbon source urban wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171550. [PMID: 38461981 DOI: 10.1016/j.scitotenv.2024.171550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA). Three wastewater treatment processes (i.e., anaerobic anoxic oxic, A2O; cyclic activated sludge technology, CAST; modified cyclic activated sludge technology, M-CAST) for low carbon source urban wastewater are selected. The micro key element flow analysis illustrated that carbon source mainly flows to the assimilation function to promote microorganism growth. The carbon footprint analysis illustrated that M-CAST as the optimal wastewater treatment process had the lowest global warming potential (GWP). The key to reduce carbon emissions is to limit electricity consumption in wastewater treatment processes. Under the comprehensive carbon footprint analysis, M-CAST has the lowest environmental impact with low carbon emissions. The sensitivity analysis results revealed that biotreatment section variables considerably reduced the environmental impact on the LCA and the GWP, followed by the sludge disposal section. With this research, the optimization scheme can guide wastewater treatment plants to optimize relevant treatment sections and reduce pollution and carbon emissions.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Xiaotian Ma
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
López-Patiño AM, Cárdenas-Orrego A, Torres AF, Navarrete D, Champagne P, Ochoa-Herrera V. Native microalgal-bacterial consortia from the Ecuadorian Amazon region: an alternative to domestic wastewater treatment. Front Bioeng Biotechnol 2024; 12:1338547. [PMID: 38468686 PMCID: PMC10925762 DOI: 10.3389/fbioe.2024.1338547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.
Collapse
Affiliation(s)
- Amanda M. López-Patiño
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Cárdenas-Orrego
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés F. Torres
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Danny Navarrete
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Pascale Champagne
- Department of Civil Engineering, Queen’s University, Kingston, ON, Canada
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Escuela de Ingeniería, Ciencia y Tecnología, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Zhu T, Ding J, Liu Y, Li X, Wang Z, Liu Y. The effect of organic sources on the electron distribution and N 2O emission in sulfur-driven autotrophic denitrification biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166126. [PMID: 37562622 DOI: 10.1016/j.scitotenv.2023.166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SAD) is considered as an effective alternative to traditional heterotrophic denitrification (HD) due to its cheap, low sludge production and non-toxicity. Nitrous oxide (N2O) as an intermediate product inevitably was generated at the limited supply of electron donor or unbalanced electron distribution condition during the denitrification process. Recently, autotrophic denitrification biofilters were conclusively implemented for advanced nitrogen removal in wastewater treatment plant (WWTP). However, residual organic sources after wastewater treatment could affect the electron distribution among denitrifying reductases and few studies are known about this issue. In this study, several lab-scale biofilters packed with elemental sulfur slices were applied to explore the electron distribution characteristics of autotrophic denitrification through the combination of different nitrogen oxides (NOx). The results clearly delineated that the different combination of nitrogen oxides had a remarkable effect on the electron distribution. In any case, the electrons likely flow toward nitrate reductase (Nar) under a single nitrogen oxide combination, followed by nitrite reductase (Nir) and nitrous oxide reductase (Nos). The concurrent presence of multiple electron acceptors resulted in most electrons flowing toward Nar, and least toward Nos. Compared to traditional SAD, the reduction rate of nitrogen oxide in the sulfur-driven autotrophic denitrification with influent of organic source (OSAD) was greatly improved. The maximum value of the true specific rates of NO3- in OSAD process was 9.43 mg-N/g-VSS/h. It was increased by 8.26 folds higher than that in traditional SAD. The electrons were more easily distributed to Nos with the addition of sodium acetate, which further promoted the N2O reduction. This study will provide theoretical support for controlling N2O release in SAD biofilters.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xufeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
7
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|
8
|
Zhang X, Ma B, Zhang N, Zhang H, Ma Y, Song Y, Zhang H. Regulating performance of CANON process via adding external quorum sensing signal molecules in membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 369:128465. [PMID: 36503093 DOI: 10.1016/j.biortech.2022.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, the regulation effect of the external quorum sensing signals, N-dodecanoyl homoserine lactone (C12-HSL) on CANON process were investigated in a membrane bioreactor. C12-HSL significantly enhanced the aerobic ammonia-oxidizing bacteria and improved the ammonia monooxygenase activity to 0.134 from 0.076 μg NO2--N mg-1 protein min-1, while suppressed anaerobic ammonia-oxidizing bacteria and limited the TN removal to 0.07 from 0.22 kg m-3 d-1. Key enzymes synthesis were enhanced during the operation without C12-HSL addition, enabling the resistance of CANON system to high C12-HSL. As a result, the hydroxylamine oxidoreductase and nitrite reductase activity reached 35.9 EU g-1 SS and 1.28 μg NO2--N mg-1 protein min-1, respectively; Nitrosomonas and Candidatus Kuenenia, with the abundance as 12.5 % and 22.9 %, cooperatively contributed to the TN removal, which maintained at 0.19 kg m-3 d-1. C12-HSL was profitable for aerobic ammonia oxidation, which could be adopted for regulating the nitrite production rate.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Bingbing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Nan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
9
|
Deng YF, Zan FX, Huang H, Wu D, Tang WT, Chen GH. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. WATER RESEARCH 2022; 224:119051. [PMID: 36113234 DOI: 10.1016/j.watres.2022.119051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Anoxic ammonium oxidation (anammox) is an energy-efficient nitrogen removal process for wastewater treatment. However, the unstable nitrite supply and residual nitrate in the anammox process have limited its wide application. Recent studies have proven coupling of sulfur-based denitrification with anammox (SDA) can achieve an effective nitrogen removal, owing to stable provision of substrate nitrite from the sulfur-based denitrification, thus making its process control more efficient in comparison with that of partial nitrification and anammox process. Meanwhile, the anammox-produced nitrate can be eliminated through sulfur-based denitrification, thereby enhancing SDA's overall nitrogen removal efficiency. Nonetheless, this process is governed by a complex microbial system that involves both complicated sulfur and nitrogen metabolisms as well as multiple interactions among sulfur-oxidising bacteria and anammox bacteria. A comprehensive understanding of the principles of the SDA process is the key to facilitating the development and application of this novel process. Hence, this review is conducted to systematically summarise various findings on the SDA process, including its associated biochemistry, biokinetic reactions, reactor performance, and application. The dominant functional bacteria and microbial interactions in the SDA process are further discussed. Finally, the advantages, challenges, and future research perspectives of SDA are outlined. Overall, this work gives an in-depth insight into the coupling mechanism of SDA and its potential application in biological nitrogen removal.
Collapse
Affiliation(s)
- Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Fei-Xiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Center for Environmental and Energy Research, Ghent University Global Campus, Republic of Korea
| | - Wen-Tao Tang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
10
|
Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater. WATER 2022. [DOI: 10.3390/w14121868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to improve the removal ability of nitrogen and phosphorus pollutants from sewage with low C/N ratio, this study prepared the glucose polymer-based pyrite tailings with core-shell structure through glucose polymerizing on the surface of pyrite tailings particles and constructed a heterotrophic-sulfur autotrophic mixed-denitrification system. The experimental results show that compared with ordinary pyrite tailings, pyrite tailings modified by glucose polymer can improve the water quality of pH, enhance the ability to remove NO3− in water, and prolong the ability of mineral to continuously treat sewage, which also has a good removal effect on PO43− in water. The results of this study are of great significance to solve the excessive nitrogen and phosphorus in the secondary effluent and alleviate the eutrophication of the natural water.
Collapse
|
11
|
Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The microalgae–bacteria consortium is a promising and sustainable alternative for industrial wastewater treatment, since it may allow good removal of organic matter and nutrients, as well as the possibility of producing products with added value from the algae biomass. This research investigated the best bacterial and microalgae inoculation ratio for system start-up and evaluation of removing organic matter (as chemical oxygen demand (COD)), ammoniacal nitrogen (NH4+–N), nitrite nitrogen (NO2−–N), nitrate nitrogen (NO3−–N), phosphate phosphorus (PO43−–P) and biomass formation parameters in six photobioreactors with a total volume of 1000 mL. Reactors were operated for 14 days with the following ratios of pulp mill biomass aerobic (BA) and Scenedesmus sp. microalgae (MA): 0:1 (PBR1), 1:0 (PBR2), 1:1 (PBR3), 3:1 (PBR4), 5:1 (PBR5), and 1:3 (PBR6). Results show that COD removal was observed in just two days of operation in PBR4, PBR5, and PBR6, whereas for the other reactors (with a lower rate of initial inoculation) it took five days. The PBR5 and PBR6 performed better in terms of NH4+–N removal, with 86.81% and 77.11%, respectively, which can be attributed to assimilation by microalgae and nitrification by bacteria. PBR6, with the highest concentration of microalgae, had the higher PO43−–P removal (86%), showing the advantage of algae in consortium with bacteria for phosphorus uptake. PBR4 and PBR5, with the highest BA, led to a better biomass production and sedimentability on the second day of operation, with flocculation efficiencies values over 90%. Regarding the formation of extracellular polymeric substances (EPS), protein production was substantially higher in PBR4 and PBR5, with more BA, with average concentrations of 49.90 mg/L and 49.05 mg/L, respectively. The presence of cyanobacteria and Chlorophyceae was identified in all reactors except PBR1 (only MA), which may indicate a good formation and structuring of the microalgae–bacteria consortium. Scanning electron microscopy (SEM) analysis revealed that filamentous microalgae were employed as a foundation for the fixation of bacteria and other algae colonies.
Collapse
|