1
|
Lei YC, Zhou J, Zhou W, Wang Y, Zhang M, Zhang A, Wang L. Advanced development of anion-exchange membrane electrolyzers for hydrogen production: from anion-exchange membranes to membrane electrode assemblies. Chem Commun (Camb) 2024; 60:11000-11016. [PMID: 39262314 DOI: 10.1039/d4cc03043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Anion-exchange membrane water electrolysis (AEMWE) has attracted attention owing to its operation in alkaline environments, which offers the advantage of not requiring the use of precious metals. Additionally, AEMWE exhibits higher kinetics in the hydrogen evolution reaction, enabling higher hydrogen production efficiency. The anion-exchange membrane (AEM) fabrication, catalyst design, and membrane electrode assembly (MEA) are crucial for enhancing the total water electrolysis performance. There is an urgent need to summarize the advances in the development of AEMWE to pave the way for the commercialization of AEMWE. In this review, first, the fundamental principles of AEMWE technology are introduced. Second, the optimization of AEM with high ion conductivity and high stability through innovative synthetic methods are discussed in detail. Third, the designs of catalysts to increase the reaction rates by regulating the OH-adsorption environment and relieving OH blockage are introduced. Last but not least, a systematic summary of the concepts of 3D-ordered MEA, 3D-unified MEA, and 3D-self-supported MEA is presented. This review would be helpful to enhance the overall performance of AEMWE and promote the development of green hydrogen energy.
Collapse
Affiliation(s)
- Yun Chao Lei
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Jiayang Zhou
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Wentao Zhou
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Yan Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Xie Z, Qu W, Fisher EA, Fahlman J, Asazawa K, Hayashi T, Shirataki H, Murase H. Capacitance Determination for the Evaluation of Electrochemically Active Surface Area in a Catalyst Layer of NiFe-Layered Double Hydroxides for Anion Exchange Membrane Water Electrolyser. MATERIALS (BASEL, SWITZERLAND) 2024; 17:556. [PMID: 38591377 PMCID: PMC11154243 DOI: 10.3390/ma17030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 04/10/2024]
Abstract
The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be developed. Traditional double layer capacitance (Cdl), measured by cyclic voltammetry (CV), is not suitable for the estimation of the ECSA due to the nonconductive nature of Ni-based oxides and hydroxides in the non-Faradaic region. This paper analyses the applicability of electrochemical impedance spectroscopy (EIS) compared to CV in determining capacitances for the estimation of the ECSA of AEM-based CLs in an aqueous KOH electrolyte solution. A porous electrode transmission line (TML) model was employed to obtain the capacitance-voltage dependence from 1.0 V to 1.5 V at 20 mV intervals, covering both non-Faradic and Faradic regions. This allows for the identification of the contribution of a NiFe-layered double hydroxide (LDH) catalyst and supports in a CL, to capacitances in both non-Faradic and Faradic regions. A nearly constant double layer capacitance (Qdl) observed in the non-Faradic region represents the interfaces between catalyst supports and electrolytes. The capacitance determined in the Faradic region by EIS experiences a peak capacitance (QF), which represents the maximum achievable ECSA in an AEMCL during reactions. The EIS method was additionally validated in durability testing. An approximate 30% loss of QF was noted while Qdl remained unchanged following an eight-week test at 1 A/cm2 constant current density, implying that QF, determined by EIS, is sensitive to and therefore suitable for assessing the loss of ECSA. This universal method can provide a reasonable estimate of catalyst utilization and enable the monitoring of catalyst degradation in CLs, in particular in liquid alkaline electrolyte water electrolysis systems.
Collapse
Affiliation(s)
- Zhong Xie
- Energy, Mining and Environmental Research Centre, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada; (W.Q.); (E.A.F.); (J.F.)
| | - Wei Qu
- Energy, Mining and Environmental Research Centre, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada; (W.Q.); (E.A.F.); (J.F.)
| | - Elizabeth A. Fisher
- Energy, Mining and Environmental Research Centre, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada; (W.Q.); (E.A.F.); (J.F.)
| | - Jason Fahlman
- Energy, Mining and Environmental Research Centre, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada; (W.Q.); (E.A.F.); (J.F.)
| | - Koichiro Asazawa
- Applied Material Technology Center, Technology Division, Panasonic Holdings Corporation, 3-1-1, Yagumonakamachi, Moriguchi 570-8501, Osaka, Japan; (K.A.); (T.H.); (H.S.); (H.M.)
| | - Takao Hayashi
- Applied Material Technology Center, Technology Division, Panasonic Holdings Corporation, 3-1-1, Yagumonakamachi, Moriguchi 570-8501, Osaka, Japan; (K.A.); (T.H.); (H.S.); (H.M.)
| | - Hiroshi Shirataki
- Applied Material Technology Center, Technology Division, Panasonic Holdings Corporation, 3-1-1, Yagumonakamachi, Moriguchi 570-8501, Osaka, Japan; (K.A.); (T.H.); (H.S.); (H.M.)
| | - Hideaki Murase
- Applied Material Technology Center, Technology Division, Panasonic Holdings Corporation, 3-1-1, Yagumonakamachi, Moriguchi 570-8501, Osaka, Japan; (K.A.); (T.H.); (H.S.); (H.M.)
| |
Collapse
|
3
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
4
|
Effect of catalyst layer designs for high-performance and durable anion-exchange membrane water electrolysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Park JE, Park S, Kim MJ, Shin H, Kang SY, Cho YH, Sung YE. Three-Dimensional Unified Electrode Design Using a NiFeOOH Catalyst for Superior Performance and Durable Anion-Exchange Membrane Water Electrolyzers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ji Eun Park
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ju Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Hun Cho
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do 25913, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Im HS, Park SH, Ha HJ, Lee S, Heo S, Im SW, Nam KT, Lim SY. Fabrication of Ni−Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2021.00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Jo Y, Choi M, Kim M, Yoo JS, Choi W, Lee D. Promotion of alkaline hydrogen production via Ni‐doping of atomically precise Ag nanoclusters. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yongsung Jo
- Department of Chemistry Yonsei University Seoul Republic of Korea
| | - Minji Choi
- Department of Chemical Engineering University of Seoul Seoul Republic of Korea
| | - Minseok Kim
- Department of Chemistry Yonsei University Seoul Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering University of Seoul Seoul Republic of Korea
| | - Woojun Choi
- Department of Chemistry and Medical Chemistry Yonsei University Wonju Gangwon Republic of Korea
| | - Dongil Lee
- Department of Chemistry Yonsei University Seoul Republic of Korea
| |
Collapse
|
8
|
López-Fernández E, Sacedón CG, Gil-Rostra J, Yubero F, González-Elipe AR, de Lucas-Consuegra A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021; 26:6326. [PMID: 34770735 PMCID: PMC8587517 DOI: 10.3390/molecules26216326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies, anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells, and alkaline or proton exchange membrane water electrolyzers. Recently, very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components, paying particular attention to the preparation methods for catalyst coated on gas diffusion layers, which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts, including co-precipitation, electrodeposition, sol-gel, hydrothermal, chemical vapor deposition, atomic layer deposition, ion beam sputtering, and magnetron sputtering deposition techniques, have been detailed. Besides a description of these procedures, in this review, we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis, a critical comparison of cell performance is carried out, and future prospects and expected developments of the AEMWE are discussed.
Collapse
Affiliation(s)
- Ester López-Fernández
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| | - Celia Gómez Sacedón
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| | - Jorge Gil-Rostra
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Francisco Yubero
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Agustín R. González-Elipe
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Antonio de Lucas-Consuegra
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| |
Collapse
|
9
|
Cossar E, Agarwal K, Nguyen VB, Safari R, Botton GA, Baranova EA. Highly Active Nickel–Iron Nanoparticles With and Without Ceria for the Oxygen Evolution Reaction. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
López-Fernández E, Gil-Rostra J, Espinós JP, González-Elipe AR, de Lucas Consuegra A, Yubero F. Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00856] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. López-Fernández
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071, Ciudad Real, Spain
| | - J. Gil-Rostra
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - J. P. Espinós
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - A. R. González-Elipe
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - A. de Lucas Consuegra
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071, Ciudad Real, Spain
| | - F. Yubero
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain
| |
Collapse
|
11
|
Vincent I, Lee EC, Kim HM. Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production. RSC Adv 2020; 10:37429-37438. [PMID: 35521279 PMCID: PMC9057118 DOI: 10.1039/d0ra07190k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis. It can produce pressurised hydrogen by using low cost non-noble metal catalysts. However, the performances are still lower than that of the conventional PEM electrolysis technology. In this study, we addressed the performance issue by using a novel combination of Ni–Fe–Ox for oxygen evolution reaction (OER) and Ni–Fe–Co hydrogen evolution reaction (HER) electrodes with a PBI anion exchange membrane. The Ni–Fe–Ox and Ni–Fe–Co electrodes exhibit exceptionally high catalytic activity, requiring over potentials that are as low as 236 and 84 mV dec−1, respectively, for OER and HER to occur. These electrocatalysts exhibits excellent durability which can be used as oxygen evolution and hydrogen evolution catalysts for long term electrolysis. The high rate capability of 1000 mA cm−2 at 1.9 V and 60 °C demonstrates the potential of the combined membrane electrode assembly. The best performance, which is comparable to those of commercial PEM electrolysis systems, is thus an affordable alternative to this technology. In addition to that, the AEM electrolysis is promising on a multi-scale level for long-term hydrogen production. Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis.![]()
Collapse
Affiliation(s)
- Immanuel Vincent
- Power System and Sustainable Energy Laboratory
- High Safety Vehicle Core Technology Research Center
- Department of Nanoscience and Engineering
- INJE University
- Gimhae-si
| | - Eun-Chong Lee
- Power System and Sustainable Energy Laboratory
- High Safety Vehicle Core Technology Research Center
- Department of Nanoscience and Engineering
- INJE University
- Gimhae-si
| | - Hyung-Man Kim
- Power System and Sustainable Energy Laboratory
- High Safety Vehicle Core Technology Research Center
- Department of Nanoscience and Engineering
- INJE University
- Gimhae-si
| |
Collapse
|
12
|
The Performance of Nickel and Nickel-Iron Catalysts Evaluated As Anodes in Anion Exchange Membrane Water Electrolysis. Catalysts 2019. [DOI: 10.3390/catal9100814] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Anion exchange membrane water electrolysis (AEMWE) is an efficient, cost-effective solution to renewable energy storage. The process includes oxygen and hydrogen evolution reactions (OER and HER); the OER is kinetically unfavourable. Studies have shown that nickel (Ni)- iron (Fe) catalysts enhance activity towards OER, and cerium oxide (CeO2) supports have shown positive effects on catalytic performance. This study covers the preliminary evaluation of Ni, Ni90Fe10 (at%) and Ni90Fe10/CeO2 (50 wt%) nanoparticles (NPs), synthesized by chemical reduction, as OER catalysts in AEMWE using commercial membranes. Transmission electron microscopy (TEM) images of the Ni-based NPs indicate NPs roughly 4–6 nm in size. Three-electrode cell measurements indicate that Ni90Fe10 is the most active non-noble metal catalyst in 1 and 0.1 M KOH. AEMWE measurements of the anodes show cells achieving overall cell voltages between 1.85 and 1.90 V at 2 A cm−2 in 1 M KOH at 50 °C, which is comparable to the selected iridium-black reference catalyst. In 0.1 M KOH, the AEMWE cell containing Ni90Fe10 attained the lowest voltage of 1.99 V at 2 A cm−2. Electrochemical impedance spectroscopy (EIS) of the AEMWE cells using Ni90Fe10/CeO2 showed a higher ohmic resistance than all catalysts, indicating the need for support optimization.
Collapse
|
13
|
Effect of Unbleached Rice Straw Cellulose Nanofibers on the Properties of Polysulfone Membranes. Polymers (Basel) 2019; 11:polym11060938. [PMID: 31146496 PMCID: PMC6630760 DOI: 10.3390/polym11060938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022] Open
Abstract
In addition to their lower cost and more environmentally friendly nature, cellulose nanofibers isolated from unbleached pulps offer different surface properties and functionality than those isolated from bleached pulps. At the same time, nanofibers isolated from unbleached pulps keep interesting properties such as hydrophilicity and mechanical strength, close to those isolated from bleached pulps. In the current work, rice straw nanofibers (RSNF) isolated from unbleached neutral sulfite pulp (lignin content 14%) were used with polysulfone (PSF) polymer to make membrane via phase inversion. The effect of RSNF on microstructure, porosity, hydrophilicity, mechanical properties, water flux, and fouling of PSF membranes was studied. In addition, the prepared membranes were tested to remove lime nanoparticles, an example of medium-size nanoparticles. The results showed that using RSNF at loadings from 0.5 to 2 wt.% can significantly increase hydrophilicity, porosity, water flux, and antifouling properties of PSF. RSNF also brought about an increase in rejection of lime nanoparticles (up to 98% rejection) from their aqueous suspension, and at the same time, with increasing flux across the membranes. Tensile strength of the membranes improved by ~29% with addition of RSNF and the maximum improvement was obtained on using 0.5% of RSNF, while Young’s modulus improved by ~40% at the same RSNF loading. As compared to previous published results on using cellulose nanofibers isolated from bleached pulps, the obtained results in the current work showed potential application of nanofibers isolated from unbleached pulps for improving important properties of PSF membranes, such as hydrophilicity, water flux, rejection, and antifouling properties.
Collapse
|