1
|
Khafaga DSR, Eid MM, Mohamed MH, Abdelmaksoud MDE, Afify M, El-Khawaga AM, Abdelhakim HK. Enhanced anticancer activity of silver doped zinc oxide magnetic nanocarrier loaded with sorafenib for hepatocellular carcinoma treatment. Sci Rep 2024; 14:15538. [PMID: 38969729 PMCID: PMC11226637 DOI: 10.1038/s41598-024-65235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Drug delivery is the process or method of delivering a pharmacological product to have therapeutic effects on humans or animals. The use of nanoparticles to deliver medications to cells is driving the present surge in interest in improving human health. Green nanodrug delivery methods are based on chemical processes that are acceptable for the environment or that use natural biomaterials such as plant extracts and microorganisms. In this study, zinc oxide-superparamagnetic iron oxide-silver nanocomposite was synthesized via green synthesis method using Fusarium oxysporum fungi mycelia then loaded with sorafenib drug. The synthesized nanocomposites were characterized by UV-visibile spectroscopy, FTIR, TEM and SEM techniques. Sorafenib is a cancer treatment and is also known by its brand name, Nexavar. Sorafenib is the only systemic medication available in the world to treat hepatocellular carcinoma. Sorafenib, like many other chemotherapeutics, has side effects that restrict its effectiveness, including toxicity, nausea, mucositis, hypertension, alopecia, and hand-foot skin reaction. In our study, 40 male albino rats were given a single dose of diethyl nitrosamine (DEN) 60 mg/kg b.wt., followed by carbon tetrachloride 2 ml/kg b.wt. twice a week for one month. The aim of our study is using the zinc oxide-superparamagnetic iron oxide-silver nanocomposite that was synthesized by Fusarium oxysporum fungi mycelia as nanocarrier for enhancement the sorafenib anticancer effect.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, New Galala City, Suez, 43511, Egypt.
| | - M M Eid
- Spectroscopy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mona H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed D E Abdelmaksoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mie Afify
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, New Galala City, Suez, 43511, Egypt.
| | - Heba K Abdelhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Kabil MF, Gaber SAA, Hamzawy MA, El-Sherbiny IM, Nasr M. Folic/lactobionic acid dual-targeted polymeric nanocapsules for potential treatment of hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:1338-1351. [PMID: 37930630 DOI: 10.1007/s13346-023-01467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that affects many patients diagnosed with hepatic cell inflammation and liver cirrhosis. Targeted polymeric nanocapsules could facilitate the internalization and accumulation of anticancer drugs. Dual-targeted folic acid/lactobionic acid-poly lactic co-glycolic acid nanocapsules (NCs) were prepared and loaded with pterostilbene (PTN) and characterized for their physicochemical properties, as well as in vitro and in vivo anticancer activity. NCs displayed a size of 222 nm, zeta potential of - 16.5 mV, and sustained release for 48 h. The IC50 of PTN NCs (5.87 ± 0.8 µg/mL) was 20 times lower than unencapsulated PTN (121.26 ± 9.42 µg/mL) on HepG2 liver cancer cells owing to the enhanced cellular uptake of the former, as delineated by flow cytometry. In vivo study on HCC-induced animals delineated the superiority of the dual-targeted NCs over the unencapsulated PTN, which significantly reduced the liver markers ALT, AST, and ALP, as well as the tumor-related markers AFP and Bcl2, and elevated the anti-apoptotic marker caspase 3. Furthermore, the NCs significantly reduced the oxidative stress and exhibited almost comparable histological features to the normal group. Therefore, it can be concluded that the dual-ligated folic acid/lactobionic acid nanocapsules can be considered a promising potential treatment option for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Elmoslemany AM, Elzallat M, Abd-Elfatah MH, Mohammed DM, Elhady EE. Possible therapeutic effect of frankincense (Gum olibanum) and myrrh (Commiphora myrrha) resins extracts on DEN/CCL4 induced hepatocellular carcinoma in rats. PHYTOMEDICINE PLUS 2024; 4:100517. [DOI: 10.1016/j.phyplu.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
4
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the p53-dependent transactivation of the CCL4 gene that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2023; 37:e23316. [PMID: 36775894 PMCID: PMC10175094 DOI: 10.1002/jbt.23316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
Diepoxybutane (DEB) is the most toxic metabolite of the environmental chemical 1,3-butadiene. We previously demonstrated the occurrence of DEB-induced p53-mediated apoptosis in human lymphoblasts. The p53 protein functions as a master transcriptional regulator in orchestrating the genomic response to a variety of stress signals. Transcriptomic analysis indicated that C-C chemokine ligand 4 (CCL4) gene expression was elevated in a p53-dependent manner in DEB-exposed p53-proficient TK6 cells, but not in DEB-exposed p53-deficient NH32 cells. Thus, the objective of this study was to determine whether the CCL4 gene is a transcriptional target of p53 and deduce its role in DEB-induced apoptosis in human lymphoblasts. Endogenous and exogenous wild-type p53 transactivated the activity of the CCL4 promoter in DEB-exposed lymphoblasts, but mutant p53 activity on this promoter was reduced by ∼80% under the same experimental conditions. Knockdown of the upregulated CCL4 mRNA levels in p53-proficient TK6 cells inhibited DEB-induced apoptosis by ∼45%-50%. Collectively, these observations demonstrate for the first time that the CCL4 gene is upregulated by wild-type p53 at the transcriptional level, and this upregulation mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Maya Deve
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| | - Perpetua M. Muganda
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411 USA
| |
Collapse
|
5
|
Khan S, Khan HU, Khan FA, Shah A, Wadood A, Ahmad S, Almehmadi M, Alsaiari AA, Shah FU, Kamran N. Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats. Pharmaceuticals (Basel) 2022; 15:ph15101205. [PMID: 36297317 PMCID: PMC9608663 DOI: 10.3390/ph15101205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/04/2022] Open
Abstract
The present study is aimed to determine the efficacy and dose response of the nuciferine (1), norcoclaurine (2) and crude extract of Nelumbo nucifera in managements of diabetes, Alzheimer disease and related allergies. Experimentally, alloxan (100 mg/kg body weight (b.w.))-induced diabetic rats (200−250 g) were divided into seven groups (n = 6). Group I: normal control, Group II: diabetic control, Group III: standard treated with glibenclamide and Group lV-VII: treated with methanolic crude extracts (100, 200 mg/kg), nuciferine and norcoclaurine (10 mg/kg b.w.) for 15 days. Different tests were performed, including blood glucose, body weights and antioxidant enzyme assays, i.e., superoxide dismutase (SOD), catalase test (CAT), lipid peroxidation assay (TBARS), glutathione assay (GSH) and acetylcholinesterase (AChE) assay. Nuciferine and norcoclaurine significantly reduced blood glucose (p < 0.05) and restored body weight in diabetic rats. Moreover, nuciferine and norcoclaurine (10 mg/kg) significantly recovered the antioxidant enzymes (SOD, CAT, GPx and GSH) which decreased during induced diabetes. Significant increase in TBARS was also observed in the diabetic group and nuciferine as well as norcoclaurine (10 mg/kg) inhibited the increase in TBARS in diabetic animals (p < 0.05), as compared to glibenclamide. AChE activity was significantly recovered by nuciferine and norcoclaurine (10 mg/kg) both in the blood and brain of the diabetic group (p < 0.05). Nuciferine and norcoclaurine showed potent inhibitory effects against α-glucosidase and α-amylase with IC50, 19.06 ± 0.03, 15.03 ± 0.09 μM and 24.07 ± 0.05, 18.04 ± 0.021 μM, as confirmed by molecular docking studies. This study concludes that nuciferine and norcoclaurine significantly improve memory and could be considered as an effective phytomedicine for diabetes, Alzheimer’s disease (AD) and oxidative stress.
Collapse
Affiliation(s)
- Shahnaz Khan
- Department of Chemistry, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (S.K.); (F.A.K.); Tel.: +92-3339724044 (F.A.K.)
| | - Hidayat Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (S.K.); (F.A.K.); Tel.: +92-3339724044 (F.A.K.)
| | - Afzal Shah
- Department of Chemistry, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Farid Ullah Shah
- Department of Biochemistry, Rehman Medical Collage, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Kamran
- Lady Reading Hospital, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Almatroodi SA, Almatroudi A, Anwar S, Yousif Babiker A, Khan AA, Alsahli MA, Rahmani AH. Antioxidant, anti-inflammatory and hepatoprotective effects of olive fruit pulp extract: in vivo and in vitro study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1848761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
7
|
Zayed Mohamed N, Aly HF, moneim El-Mezayen HA, El-Salamony HE. Effect of co-administration of Bee honey and some chemotherapeutic drugs on dissemination of hepatocellular carcinoma in rats. Toxicol Rep 2019; 6:875-888. [PMID: 31516840 PMCID: PMC6727247 DOI: 10.1016/j.toxrep.2019.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/18/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative and complimentary usage of the natural compound has raised hopes of finding curative options for liver hepatocarcinogenesis. In the present study, the curative effect of bee honey against diethylnitrosamine (DEN) (50 mg/kg) and carbon tetrachloride (CCl4) (2 mg/Kg)-induced hepatocellular carcinoma (HCC) in male rats in the presence or absence of some chemotherapeutic drugs, Cisplatin (Cis), Cyclophosphamide (CY) and 5- Fluorouracil (5-FU) were investigated. The obtained results demonstrated that treatment with DEN/CCl4 caused oxidative stress as assigned by the increase in malondialdehyde (MDA) and fall in glutathione (GSH) content. Meantime detraction in the antioxidants, including superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) was observed. Also, the results showed induction of inflammation as reflected by an increase in the levels of both α- fetoprotein and α- fucosidase in the liver. This was accompanied by changes in the hepatic function biomarkers which characterized by the increased levels of transaminases (AST, ALT), alkaline phosphatase (ALP) and γ-Glutamyl transferase (γ-GT) and decrease in total protein content in the serum. In conclusion, the combination of the selected drugs and bee honey may be an effective chemo- preventive and therapeutic strategy for treating DEN and CCl4-induced HCC.
Collapse
Affiliation(s)
- Naima Zayed Mohamed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Hanan Farouk Aly
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | | | - Hadeer E. El-Salamony
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|