1
|
Pinocembrin Relieves Mycoplasma pneumoniae Infection‑Induced Pneumonia in Mice Through the Inhibition of Oxidative Stress and Inflammatory Response. Appl Biochem Biotechnol 2022; 194:6335-6348. [PMID: 35917101 DOI: 10.1007/s12010-022-04081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Pneumonia is a serious infectious disease with increased morbidity and mortality worldwide. The M. pneumoniae is a major airway pathogen that mainly affects respiratory tract and ultimately leads to the development of pneumonia. The current exploration was aimed to uncover the beneficial properties of pinocembrin against the M. pneumoniae-triggered pneumonia in mice via its anti-inflammatory property. The pneumonia was stimulated to the BALB/c mice via infecting them with M. pneumoniae (100 µl) for 2 days through nasal drops and concomitantly treated with pinocembrin (10 mg/kg) for 3 days. The azithromycin (100 mg/kg) was used as a standard drug. Then the lung weight, nitric oxide, and myeloperoxidase (MPO) activity was assessed. The content of MDA, GSH, and SOD activity was scrutinized using kits. The total cells and DNA amount present in the bronchoalveolar lavage fluid (BALF) was assessed by standard methods. The IL-1, IL-6, IL-8, TNF-α, and TGF contents in the BALF samples and NF-κB level in the lung tissues were assessed using kits. The lung histopathology was assessed microscopically to detect the histological alterations. The 10 mg/kg of pinocembrin treatment substantially decreased the lung weight, nitric oxide (NO) level, and MPO activity. The MDA level was decreased, and GSH content and SOD activity were improved by the pinocembrin treatment. The pinocembrin administered pneumonia animals also demonstrated the decreased total cells, DNA amount, IL-1, IL-6, IL-8, TNF-α, and TGF in the BALF and NF-κB level. The findings of histological studies also witnessed the beneficial role of pinocembrin against M. pneumoniae-infected pneumonia. In conclusion, our findings confirmed that the pinocembrin effectively ameliorated the M. pneumoniae-provoked inflammation and oxidative stress in the pneumonia mice model. Hence, it could be a hopeful therapeutic agent to treat the pneumonia in the future.
Collapse
|
2
|
Zhang H, Li X, Wang J, Cheng Q, Shang Y, Wang G. Baicalin relieves Mycoplasma pneumoniae infection‑induced lung injury through regulating microRNA‑221 to inhibit the TLR4/NF‑κB signaling pathway. Mol Med Rep 2021; 24:571. [PMID: 34109422 PMCID: PMC8201456 DOI: 10.3892/mmr.2021.12210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. MP pneumonia (MPP) leads to numerous complications, including lung injury and even death. The present study aimed to investigate the protective effects of Baicalin treatment on MP infection‑induced lung injury and the molecular mechanism underlying these effects. Briefly, after mice were infected intranasally by MP and treated with Baicalin (80 mg/kg), serum levels of MP‑immunoglobulin M (IgM) were detected by ELISA. The expression levels of C‑reactive protein (CRP) in lung tissue were detected by immunohistochemistry and the bronchoalveolar lavage fluid (BALF) was examined by ELISA. Inflammatory factors and inflammatory cells in the BALF were assessed. The expression levels of microRNA (miR)‑221 in lung tissue were examined by reverse transcription‑quantitative PCR and pathological changes in lung tissue were detected by H&E staining. Cell apoptosis was evaluated by TUNEL assay and the protein expression levels of TLR4, MyD88 and NF‑κB were detected by western blotting. Baicalin treatment significantly reduced serum levels of MP‑IgM and CRP expression in lung tissue during MP infection. In addition, Baicalin decreased the levels of IL‑1β, IL‑6, IL‑18 and TNF‑α in the BALF, and the number of inflammatory cells. Baicalin also reduced the inflammatory infiltration in lung tissue induced by MP infection, improved the pathological changes detected in lung tissue, reduced apoptosis, and downregulated the protein expression levels of TLR4, MyD88 and NF‑κB. Furthermore, Baicalin treatment downregulated the expression of miR‑221 and the protective effects of Baicalin were attenuated by miR‑221 overexpression. In conclusion, Baicalin has a therapeutic effect on mice with MP infection‑induced lung injury, which may be related to inhibition of miR‑221 expression and regulation of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Han Zhang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiang Li
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Wang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Cheng
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunxiao Shang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guizhen Wang
- Department of Microbiology and Parasitology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Rivaya B, Jordana-Lluch E, Fernández-Rivas G, Molinos S, Campos R, Méndez-Hernández M, Matas L. Macrolide resistance and molecular typing of Mycoplasma pneumoniae infections during a 4 year period in Spain. J Antimicrob Chemother 2021; 75:2752-2759. [PMID: 32653897 PMCID: PMC7678890 DOI: 10.1093/jac/dkaa256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Background Mycoplasma pneumoniae (MP) causes community-acquired pneumonia affecting mainly children, and tends to produce cyclic outbreaks. The widespread use of macrolides is increasing resistance rates to these antibiotics. Molecular tools can help in diagnosis, typing and resistance detection, leading to better patient management. Objectives To assess the MP genotypes and resistance pattern circulating in our area while comparing serological and molecular diagnosis of MP. Methods Molecular and serological diagnosis of MP was performed in 821 samples collected in Badalona (Barcelona, Spain) from 2013 to 2017. Multiple locus variable number tandem repeat analysis (MLVA) and macrolide resistance detection by pyrosequencing were performed in those cases positive by PCR. Presence of respiratory viruses and relevant clinical data were also recorded. Results MP was detected in 16.8% of cases by PCR, with an overall agreement with serology of 76%. Eleven different MLVA types were identified, with 4-5-7-2 (50.1%) and 3-5-6-2 (29.2%) being the most abundant, with the latter showing a seasonal increase during the study. A total of 8% of the strains harboured a point substitution associated with macrolide resistance, corresponding mainly to an A2063G 23S rRNA mutation and directly related to previous macrolide therapy. Analysis of respiratory viruses showed viral coinfections in most cases. Conclusions Serological and molecular tools combined could improve MP diagnosis and the analysis of its infection patterns. Macrolide resistance is associated with previous therapy. Given that MP pneumonia usually resolves spontaneously, it should be reconsidered whether antibiotic treatment is suitable for all cases.
Collapse
Affiliation(s)
- Belén Rivaya
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Jordana-Lluch
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gema Fernández-Rivas
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sònia Molinos
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roi Campos
- Paediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Lurdes Matas
- Microbiology Department, Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Morozumi M, Tajima T, Sakuma M, Shouji M, Meguro H, Saito K, Iwata S, Ubukata K. Sequence Type Changes Associated with Decreasing Macrolide-Resistant Mycoplasma pneumoniae, Japan. Emerg Infect Dis 2021; 26:2210-2213. [PMID: 32818419 PMCID: PMC7454074 DOI: 10.3201/eid2609.191575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We compared sequence types (STs) of Mycoplasma pneumoniae isolates from Japan during 2002–2019. ST3 and ST14 dominated during 2002–2016, and ST7 and ST33 dominated during 2018–2019. These STs were associated with a decrease in macrolide-resistant strains after an epidemic of infection with M. pneumoniae during 2011–2012.
Collapse
|
5
|
Morinaga Y, Suzuki H, Notake S, Mizusaka T, Uemura K, Otomo S, Oi Y, Ushiki A, Kawabata N, Kameyama K, Morishita E, Uekura Y, Sugiyama A, Kawashima Y, Yanagihara K. Evaluation of GENECUBE Mycoplasma for the detection of macrolide-resistant Mycoplasma pneumoniae. J Med Microbiol 2020; 69:1346-1350. [PMID: 33141009 DOI: 10.1099/jmm.0.001264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Resistance against macrolide antibiotics in Mycoplasma pneumoniae is becoming non-negligible in terms of both appropriate therapy and diagnostic stewardship. Molecular methods have attractive features for the identification of Mycoplasma pneumoniae as well as its resistance-associated mutations of 23S ribosomal RNA (rRNA).Hypothesis/Gap Statement. The automated molecular diagnostic sytem can identify macrolide-resistant M. pneumoniae.Aim. To assess the performance of an automated molecular diagnostic system, GENECUBE Mycoplasma, in the detection of macrolide resistance-associated mutations.Methodology. To evaluate whether the system can distinguish mutant from wild-type 23S rRNA, synthetic oligonucleotides mimicking known mutations (high-level macrolide resistance, mutation in positions 2063 and 2064; low-level macrolide resistance, mutation in position 2067) were assayed. To evaluate clinical oropharyngeal samples, purified nucleic acids were obtained from M. pneumoniae-positive samples by using the GENECUBE system from nine hospitals. After confirmation by re-evaluation of M. pneumoniae positivity, Sanger-based sequencing of 23S rRNA and mutant typing using GENECUBE Mycoplasma were performed.Results. The system reproducibly identified all synthetic oligonucleotides associated with high-level macrolide resistance. Detection errors were only observed for A2067G (in 2 of the 10 measurements). The point mutation in 23S rRNA was detected in 67 (26.9 %) of 249 confirmed M. pneumoniae-positive clinical samples. The mutations at positions 2063, 2064 and 2617 were observed in 65 (97.0 %), 2 (3.0 %) and 0 (0.0 %) of the 67 samples, respectively. The mutations at positions 2063 and 2064 were A2063G and A2064G, respectively. The results from mutant typing using GENECUBE Mycoplasma were in full agreement with the results from sequence-based typing.Conclusion. GENECUBE Mycoplasma is a reliable test for the identification of clinically significant macrolide-resistant M. pneumoniae.
Collapse
Affiliation(s)
- Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan.,Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Hiromichi Suzuki
- Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan.,Department of Clinical Laboratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Notake
- Department of Clinical Laboratory, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Takashi Mizusaka
- Department of Clinical Laboratory, Kakogawa City Hospital, Kakogawa, Hyogo, Japan
| | - Keiichi Uemura
- Department of Clinical Laboratory, Chutoen General Medical Center, Kakegawa, Shizuoka, Japan
| | - Shinobu Otomo
- Department of Clinical Laboratory, Matsushita Memorial Hospital, Moriguchi, Osaka, Japan
| | - Yuka Oi
- Department of Clinical Laboratory, Osaka General Medical Center, Osaka, Osaka, Japan
| | - Akihito Ushiki
- Department of Clinical Laboratory, Tone-chuo-hospital, Numata, Gunma, Japan
| | - Naoki Kawabata
- Department of Clinical Laboratory, Municipal Tsuruga Hospital, Tsuruga, Fukui, Japan
| | - Kazuaki Kameyama
- Department of Clinical Laboratory, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Eri Morishita
- Department of Clinical Laboratory, Akashi Medical Center, Akashi, Hyogo, Japan
| | - Yoshiko Uekura
- Tsuruga Institute of Biotechnology, TOYOBO Co., Ltd, Tsuruga, Fukui, Japan
| | - Akio Sugiyama
- Diagnostic System Department, TOYOBO Co., Ltd, Osaka, Osaka, Japan
| | - Yosuke Kawashima
- Tsuruga Institute of Biotechnology, TOYOBO Co., Ltd, Tsuruga, Fukui, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| |
Collapse
|
6
|
Molecular Typing of Mycoplasma pneumoniae Strains in Sweden from 1996 to 2017 and the Emergence of a New P1 Cytadhesin Gene, Variant 2e. J Clin Microbiol 2019; 57:JCM.00049-19. [PMID: 30918047 PMCID: PMC6535615 DOI: 10.1128/jcm.00049-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 01/03/2023] Open
Abstract
Mycoplasma pneumoniae causes respiratory infections, such as community-acquired pneumonia (CAP), with epidemics recurring every 3 to 7 years. In 2010 and 2011, many countries experienced an extraordinary epidemic peak. Mycoplasma pneumoniae causes respiratory infections, such as community-acquired pneumonia (CAP), with epidemics recurring every 3 to 7 years. In 2010 and 2011, many countries experienced an extraordinary epidemic peak. The cause of these recurring epidemics is not understood, but decreasing herd immunity and shifts in the strains’ antigenic properties have been suggested as contributing factors. M. pneumoniae PCR-positive samples were collected between 1996 and 2017 from four neighboring counties inhabited by 12% of Sweden’s population. A total of 578 isolates were characterized directly from 624 clinical samples using P1 typing by sequencing and multilocus variable number tandem repeat analysis (MLVA). A fluorescence resonance energy transfer (FRET)-PCR approach was also used to detect mutations associated with macrolide resistance in the 23S rRNA gene. Through P1 typing, the strains were classified into type 1 and type 2, as well as variants 2a, 2b, 2c, and a new variant found in nine of the strains, denoted variant 2e. Twelve MLVA types were distinguished, and 3-5-6-2 (42.4%), 4-5-7-2 (37.4%), and 3-6-6-2 (14.9%) predominated. Several P1 and MLVA types cocirculated each year, but type 2/variant 2 strains and MLVA types 3-5-6-2 and 4-5-7-2 predominated during the epidemic period comprising the peak of 2010 and 2011. In 2016 and 2017, type 1 became more common, and MLVA type 4-5-7-2 predominated. We also found that 0.2% (1/578) of the strains carried a macrolide resistance-associated mutation, indicating a very low prevalence of macrolide resistance in this region of Sweden.
Collapse
|
7
|
Long-Term Low Rate of Macrolide-Resistant Mycoplasma pneumoniae Strains in Germany. Antimicrob Agents Chemother 2019; 63:AAC.00455-19. [PMID: 30858220 DOI: 10.1128/aac.00455-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Athlin S, Lidman C, Lundqvist A, Naucler P, Nilsson AC, Spindler C, Strålin K, Hedlund J. Management of community-acquired pneumonia in immunocompetent adults: updated Swedish guidelines 2017. Infect Dis (Lond) 2017; 50:247-272. [PMID: 29119848 DOI: 10.1080/23744235.2017.1399316] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Based on expert group work, Swedish recommendations for the management of community-acquired pneumonia in adults are here updated. The management of sepsis-induced hypotension is addressed in detail, including monitoring and parenteral therapy. The importance of respiratory support in cases of acute respiratory failure is emphasized. Treatment with high-flow oxygen and non-invasive ventilation is recommended. The use of statins or steroids in general therapy is not found to be fully supported by evidence. In the management of pleural infection, new data show favourable effects of tissue plasminogen activator and deoxyribonuclease installation. Detailed recommendations for the vaccination of risk groups are afforded.
Collapse
Affiliation(s)
- Simon Athlin
- a Department of Infectious Diseases , Örebro University Hospital , Örebro , Sweden.,b Faculty of Medicin and Health , Örebro University , Örebro , Sweden
| | - Christer Lidman
- c Unit of Infectious Diseases, Department of Medicine Solna , Karolinska Institutet , Stockholm , Sweden.,d Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden
| | - Anders Lundqvist
- e Department of Infectious Diseases , Södra Älvsborgs Hospital , Borås , Sweden
| | - Pontus Naucler
- c Unit of Infectious Diseases, Department of Medicine Solna , Karolinska Institutet , Stockholm , Sweden.,d Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden
| | - Anna C Nilsson
- f Infectious Disease Research Unit, Department of Translational Medicine , Lund University , Malmö , Sweden
| | - Carl Spindler
- d Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden
| | - Kristoffer Strålin
- b Faculty of Medicin and Health , Örebro University , Örebro , Sweden.,d Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden.,g Unit of Infectious Diseases, Department of Medicine Huddinge , Karolinska Institutet , Stockholm , Sweden
| | - Jonas Hedlund
- c Unit of Infectious Diseases, Department of Medicine Solna , Karolinska Institutet , Stockholm , Sweden.,d Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
9
|
Viasus D, Ramos O, Ramos L, Simonetti AF, Carratalà J. Solithromycin for the treatment of community-acquired bacterial pneumonia. Expert Rev Respir Med 2016; 11:5-12. [PMID: 27753516 DOI: 10.1080/17476348.2017.1249852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Community-acquired pneumonia is a major public health problem worldwide. In recent years, there has been an increase in the frequency of resistance to the antimicrobials such as β-lactams or macrolides which have habitually been used against the causative pathogens. Solithromycin, a next-generation macrolide, is the first fluoroketolide with activity against most of the frequently isolated bacteria in community-acquired pneumonia, including typical and atypical bacteria as well as macrolide-resistant Streptococcus pneumoniae. Areas covered: A detailed assessment of the literature relating to the antimicrobial activity, pharmacokinetic/pharmacodynamic properties, efficacy, tolerability and safety of solithromycin for the treatment of community-acquired bacterial pneumonia Expert commentary: Recent randomized controlled phase II/III trials have demonstrated the equivalent efficacy of oral and intravenous solithromycin compared with fluoroquinolones in patients with lower mild-to-moderate respiratory infections, and have shown that systemic adverse events are comparable between solithromycin and alternative treatments. However, studies of larger populations which are able to identify infrequent adverse events are now needed to confirm these findings. On balance, current data supports solithromycin as a promising therapy for empirical treatment in adults with community-acquired bacterial pneumonia.
Collapse
Affiliation(s)
- Diego Viasus
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Oscar Ramos
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Leidy Ramos
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Antonella F Simonetti
- b Infectious Disease Department , Hospital Universitari de Bellvitge - IDIBELL , Barcelona , Spain
| | - Jordi Carratalà
- b Infectious Disease Department , Hospital Universitari de Bellvitge - IDIBELL , Barcelona , Spain.,c Spanish Network for Research in Infectious Diseases (REIPI), and Clinical Science Department, Faculty of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|