1
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
3
|
Mori H, Hamamura K, Yo S, Hamajima K, Ootani K, Honda M, Ishizuka K, Kondo H, Tanaka K, Kodama D, Hirai T, Miyazawa K, Goto S, Togari A. Conditioned medium from rat dental pulp reduces the number of osteoclasts via attenuation of adhesiveness in osteoclast precursors. J Oral Sci 2018; 60:352-359. [PMID: 29984785 DOI: 10.2334/josnusd.17-0342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dental pulp is known to play crucial roles in homeostasis of teeth and periodontal tissue. Although resorption of bone around the roots of nonvital teeth is occasionally observed in clinical practice, little is known about the role of dental pulp in osteoclastogenesis. Here we evaluated the effects of conditioned medium (CM) from rat dental pulp on osteoclastogenesis. It was found that the CM reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, but did not alter the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 and TRAP. To further understand the mechanism behind these results, we evaluated the effects of CM on osteoclast precursors and found that the CM removed cell processes, resulting in a significant reduction in the number of attached cells and an increase in the number of freely floating cells. Furthermore, the CM suppressed the mRNA levels of focal adhesion kinase and paxillin, which are involved in cell adhesiveness and spreading. Collectively, the present results show that CM from dental pulp serves as an inhibitor of osteoclastogenesis by reducing the number and adhesiveness of osteoclast precursors, suggesting novel therapeutic applicability for osteoporosis.
Collapse
Affiliation(s)
- Hironori Mori
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University.,Department of Orthodontics, School of Dentistry, Aichi Gakuin University
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| | - Shoyoku Yo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University.,Department of Orthodontics, School of Dentistry, Aichi Gakuin University
| | - Kosuke Hamajima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University.,Department of Orthodontics, School of Dentistry, Aichi Gakuin University
| | | | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Kyoko Ishizuka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| | - Daisuke Kodama
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University
| | - Takao Hirai
- Laboratory of Medical Resources, School of Pharmacy, Aichi Gakuin University
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
4
|
Hirai K, Furusho H, Hirota K, Sasaki H. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss. Int J Oral Sci 2018; 10:12. [PMID: 29654284 PMCID: PMC5966812 DOI: 10.1038/s41368-018-0015-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/22/2018] [Indexed: 01/20/2023] Open
Abstract
Hypoxia (low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation of hypoxia-inducible factor 1 (HIF-1). Hypoxia interferes degradation of HIF-1 alpha subunit (HIF-1α), leading to stabilisation of HIF-1α, heterodimerization with HIF-1 beta subunit (HIF-1β) and subsequent activation of HIF-1 pathway. Apical periodontitis (periapical lesion) is a consequence of endodontic infection and ultimately results in destruction of tooth-supporting tissue, including alveolar bone. Thus far, the role of HIF-1 in periapical lesions has not been systematically examined. In the present study, we determined the role of HIF-1 in a well-characterised mouse periapical lesion model using two HIF-1α-activating strategies, dimethyloxalylglycine (DMOG) and adenovirus-induced constitutively active HIF-1α (CA-HIF1A). Both DMOG and CA-HIF1A attenuated periapical inflammation and tissue destruction. The attenuation in vivo was associated with downregulation of nuclear factor-κappa B (NF-κB) and osteoclastic gene expressions. These two agents also suppressed NF-κB activation and subsequent production of proinflammatory cytokines by macrophages. Furthermore, activation of HIF-1α by DMOG specifically suppressed lipopolysaccharide-stimulated macrophage differentiation into M1 cells, increasing the ratio of M2 macrophages against M1 cells. Taken together, our data indicated that activation of HIF-1 plays a protective role in the development of apical periodontitis via downregulation of NF-κB, proinflammatory cytokines, M1 macrophages and osteoclastogenesis.
Collapse
Affiliation(s)
- Kimito Hirai
- Department of Cariology, Restorative Sciences & Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences & Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Papadakou P, Bletsa A, Yassin MA, Karlsen TV, Wiig H, Berggreen E. Role of Hyperplasia of Gingival Lymphatics in Periodontal Inflammation. J Dent Res 2017; 96:467-476. [PMID: 28081372 DOI: 10.1177/0022034516681762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lymphatic vessels are important for maintenance of tissue fluid homeostasis and afferent antigen transport. In chronic inflammation, lymphangiogenesis takes place and is characterized by lymphatic endothelial cell proliferation and lymphatic hyperplasia. Vascular endothelial growth factor C (VEGFC) is the main known lymphangiogenic growth factor, and its expression is increased in periodontitis, a common chronic infectious disease that results in tissue destruction and alveolar bone loss. The role of lymphangiogenesis during development of periodontitis is unknown. Here, we test if transgenic overexpression of epithelial VEGFC in a murine model is followed by hyperplasia of lymphatic vessels in oral mucosa and if the lymphatic drainage capacity is altered. We also test if lymphatic hyperplasia protects against periodontal disease development. Transgenic keratin 14 (K14)-VEGFC mice had significant hyperplasia of lymphatics in oral mucosa, including gingiva, without changes in blood vessel vasculature. The basal lymph flow was normal but slightly lower than in wild-type mice when oral mucosa was challenged with lipopolysaccharide from Porphyromonas gingivalis. Under normal conditions, K14-VEGFC mice exhibited an increased number of neutrophils in gingiva, demonstrated enhanced phagocyte recruitment in the cervical lymph nodes, and had more alveolar bone when compared with their wild-type littermates. After induction of periodontitis, no strain differences were observed in the periodontal tissues with respect to granulocyte recruitment, bone resorption, angiogenesis, cytokines, and bone-related protein expressions or in draining lymph node immune cell proportions and vascularization. We conclude that overexpression of VEGFC results in hyperplastic lymphatics, which do not enhance lymphatic drainage capacity but facilitate phagocyte transport to draining lymph nodes. Hyperplasia of lymphatics does not protect against development of ligature-induced periodontitis.
Collapse
Affiliation(s)
- P Papadakou
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - A Bletsa
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - M A Yassin
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - T V Karlsen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - H Wiig
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - E Berggreen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|