1
|
Ferl S, Wunderlich G, Smits R, Hoepping A, Naumann A, Kotzerke J. Synthesis of a new HYNIC-DAPI derivative for labelling with 99mTechnetium and its in vitro evaluation in an FRTL5 cell line. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00574k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new multifunctional compound that includes the fluorescent dye 4′,6-diamidine-2-phenylindole (DAPI) and the chelator 6-hydrazinonicotinic acid (HYNIC) was developed and radiolabelled with 99mTc for in vitro evaluation in an FRTL5 cell line.
Collapse
Affiliation(s)
- Sandra Ferl
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Gerd Wunderlich
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - René Smits
- ABX advanced biochemical compounds GmbH
- 01454 Radeberg
- Germany
| | | | - Anne Naumann
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Jörg Kotzerke
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| |
Collapse
|
2
|
99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One 2014; 9:e104653. [PMID: 25098953 PMCID: PMC4123991 DOI: 10.1371/journal.pone.0104653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs.
Collapse
|
3
|
Cambien B, Franken PR, Lamit A, Mauxion T, Richard-Fiardo P, Guglielmi J, Crescence L, Mari B, Pourcher T, Darcourt J, Bardiès M, Vassaux G. ⁹⁹mTcO₄--, auger-mediated thyroid stunning: dosimetric requirements and associated molecular events. PLoS One 2014; 9:e92729. [PMID: 24663284 PMCID: PMC3963936 DOI: 10.1371/journal.pone.0092729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 01/31/2023] Open
Abstract
Low-energy Auger and conversion electrons deposit their energy in a very small volume (a few nm3) around the site of emission. From a radiotoxicological point of view the effects of low-energy electrons on normal tissues are largely unknown, understudied, and generally assumed to be negligible. In this context, the discovery that the low-energy electron emitter, 99mTc, can induce stunning on primary thyrocytes in vitro, at low absorbed doses, is intriguing. Extrapolated in vivo, this observation suggests that a radioisotope as commonly used in nuclear medicine as 99mTc may significantly influence thyroid physiology. The aims of this study were to determine whether 99mTc pertechnetate (99mTcO4−) is capable of inducing thyroid stunning in vivo, to evaluate the absorbed dose of 99mTcO4− required to induce this stunning, and to analyze the biological events associated/concomitant with this effect. Our results show that 99mTcO4−–mediated thyroid stunning can be observed in vivo in mouse thyroid. The threshold of the absorbed dose in the thyroid required to obtain a significant stunning effect is in the range of 20 Gy. This effect is associated with a reduced level of functional Na/I symporter (NIS) protein, with no significant cell death. It is reversible within a few days. At the cellular and molecular levels, a decrease in NIS mRNA, the generation of double-strand DNA breaks, and the activation of the p53 pathway are observed. Low-energy electrons emitted by 99mTc can, therefore, induce thyroid stunning in vivo in mice, if it is exposed to an absorbed dose of at least 20 Gy, a level unlikely to be encountered in clinical practice. Nevertheless this report presents an unexpected effect of low-energy electrons on a normal tissue in vivo, and provides a unique experimental setup to understand the fine molecular mechanisms involved in their biological effects.
Collapse
Affiliation(s)
- Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
- * E-mail:
| | - Philippe R. Franken
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Audrey Lamit
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Thibault Mauxion
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Peggy Richard-Fiardo
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Julien Guglielmi
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Lydie Crescence
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Bernard Mari
- Université de Nice-Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire-IPMC, CNRS UMR 7275, Sophia Antipolis, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Jacques Darcourt
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Manuel Bardiès
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Georges Vassaux
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| |
Collapse
|