1
|
Wang F, Zhao C, Jing Z, Wang Q, Li M, Lu B, Huo A, Liang W, Hu W, Fu X. The dual roles of chemokines in peripheral nerve injury and repair. Inflamm Regen 2025; 45:11. [PMID: 40217284 PMCID: PMC11987372 DOI: 10.1186/s41232-025-00375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Peripheral nerve injuries (PNI) occur in approximately 13-23 per 100,000 individuals, predominantly affecting young and middle-aged adults. These injuries often require a lengthy recovery period, placing substantial burdens on healthcare systems and national economies. Current treatment strategies have not significantly shortened this lengthy regenerative process, highlighting the urgent need for innovative therapeutic interventions. Chemokines were originally noted for their powerful ability to recruit immune cells; however, as research has advanced, it has become increasingly evident that their role in peripheral nerve repair has been underestimated. In this review, we provide the first comprehensive overview of chemokine expression and activity during peripheral nerve injury and regeneration. We summarize the existing literature on chemokine family members, detailing their expression patterns and localization in injured nerves to facilitate further mechanistic investigations. For chemokines that remain controversial, such as CXCL1 and CCL2, we critically examine experimental methodologies and discuss factors underlying conflicting results, ultimately affirming their contributions to promoting nerve repair. Importantly, we highlight the dual nature of chemokines: in the early stages of injury, they initiate reparative responses, activate Schwann cells, regulate Wallerian degeneration, and support nerve recovery; but when the axons are connected and the repair enters the later stages, their persistent proinflammatory effects during later stages may impede the healing process. Additionally, we emphasize that certain chemokines, including CXCL5, CXCL12, and CCL2, can act directly on neurons/axons, thereby accelerating axonal regeneration. Future research should focus on precisely mapping the localization and temporal expression profiles of these chemokines and exploring therapeutic approaches.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Chenglin Zhao
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Ao Huo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China.
| |
Collapse
|
2
|
Ahn J, Kim B, Bello AB, Moon JJ, Arai Y, Lee SH. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration. Tissue Eng Regen Med 2025; 22:167-180. [PMID: 39804546 PMCID: PMC11794763 DOI: 10.1007/s13770-024-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins. METHODS This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions. RESULTS AND CONCLUSION This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
Collapse
Grants
- 2022R1A2C3004850 Ministry of Science and ICT, South Korea
- RS-2024-00405381 Ministry of Science and ICT, South Korea
- RS-2023-00257290 Ministry of Science and ICT, South Korea
- RS-2023-00246418 Ministry of Education
- RS-2023-00275407 Ministry of Education
- 21C0703L1 Ministry of Science and ICT, Ministry of Health & Welfare
- HX23C1734 Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
- Ministry of Science and ICT, Ministry of Health & Welfare
- Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
Collapse
Affiliation(s)
- Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Bowon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
3
|
Xie R, You N, Chen WY, Zhu P, Wang P, Lv YP, Yue GY, Xu XL, Wu JB, Xu JY, Liu SX, Lü MH, Yang SQ, Cheng P, Mao FY, Teng YS, Peng LS, Zhang JY, Liao YL, Yang SM, Zhao YL, Chen W, Zou QM, Zhuang Y. Helicobacter pylori-Induced Angiopoietin-Like 4 Promotes Gastric Bacterial Colonization and Gastritis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0409. [PMID: 39022746 PMCID: PMC11254415 DOI: 10.34133/research.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Helicobacter pylori infection is characterized as progressive processes of bacterial persistence and chronic gastritis with features of infiltration of mononuclear cells more than granulocytes in gastric mucosa. Angiopoietin-like 4 (ANGPTL4) is considered a double-edged sword in inflammation-associated diseases, but its function and clinical relevance in H. pylori-associated pathology are unknown. Here, we demonstrate both pro-colonization and pro-inflammation roles of ANGPTL4 in H. pylori infection. Increased ANGPTL4 in the infected gastric mucosa was produced from gastric epithelial cells (GECs) synergistically induced by H. pylori and IL-17A in a cagA-dependent manner. Human gastric ANGPTL4 correlated with H. pylori colonization and the severity of gastritis, and mouse ANGPTL4 from non-bone marrow-derived cells promoted bacteria colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Il17a -/-, Angptl4 -/-, and Il17a -/- Angptl4 -/- mice. Mechanistically, ANGPTL4 bound to integrin αV (ITGAV) on GECs to suppress CXCL1 production by inhibiting ERK, leading to decreased gastric influx of neutrophils, thereby promoting H. pylori colonization; ANGPTL4 also bound to ITGAV on monocytes to promote CCL5 production by activating PI3K-AKT-NF-κB, resulting in increased gastric influx of regulatory CD4+ T cells (Tregs) via CCL5-CCR4-dependent migration. In turn, ANGPTL4 induced Treg proliferation by binding to ITGAV to activate PI3K-AKT-NF-κB, promoting H. pylori-associated gastritis. Overall, we propose a model in which ANGPTL4 collectively ensures H. pylori persistence and promotes gastritis. Efforts to inhibit ANGPTL4-associated pathway may prove valuable strategies in treating H. pylori infection.
Collapse
Affiliation(s)
- Rui Xie
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Nan You
- Department of Hepatobiliary Surgery, XinQiao Hospital,
Third Military Medical University, Chongqing, China
| | - Wan-Yan Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Peng Zhu
- Department of Gastroenterology, Suining First People’s Hospital, Suining, Sichuan, China
| | - Pan Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- Department of Infection, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Geng-Yu Yue
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiao-Lin Xu
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiang-Bo Wu
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing-Yu Xu
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Si-Xu Liu
- Department of Gastroenterology,
Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mu-Han Lü
- Department of Gastroenterology,
Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng-Qian Yang
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Department of Pharmaceutics, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Fang-Yuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Yong-Sheng Teng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Jin-Yu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Ya-Ling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Shi-Ming Yang
- Department of Gastroenterology, XinQiao Hospital,
Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital,
Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science,
La Trobe University, Bundoora, Victoria 3085, Australia
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
| | - Yuan Zhuang
- Department ofEndoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, China
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine,
Third Military Medical University, Chongqing, China
- Department of Gastroenterology,
Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
4
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
6
|
Wu D. Proapoptotic protein Bim regulates the suppressive function of Treg cells. J Zhejiang Univ Sci B 2023; 24:1180-1184. [PMID: 38057275 PMCID: PMC10710911 DOI: 10.1631/jzus.b2300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 12/08/2023]
Abstract
Regulatory T (Treg) cells are a special immunosuppressive subset of cluster of differentiation 4-positive (CD4+)-T lymphocytes and play a pivotal role in the establishment of immune homeostasis in vivo (Zhang et al., 2021). The transcription factor forkhead box protein P3 (Foxp3) is the master marker of Treg cells, which is highly expressed in Treg cells and is also essential for their suppressive function (Hori et al., 2003). In addition to Foxp3, other regulators of Treg cells have been discovered (Wu et al., 2017, 2022; Wu and Sun, 2023a, 2023b); however, a deeper understanding of the regulation of these cells is required.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
7
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|