1
|
Lu C, Jin A, Liu H, Gao C, Sun W, Zhang Y, Dai Q, Liu Y. Advancing tissue engineering through vascularized cell spheroids: building blocks of the future. Biomater Sci 2025; 13:1901-1922. [PMID: 40067332 DOI: 10.1039/d4bm01206b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Vascularization is a crucial aspect of biofabrication, as the development of vascular networks is essential for tissue survival and the optimization of cellular functions. Spheroids have emerged as versatile units for vascularization, demonstrating significant potential in angiogenesis and prevascularization for tissue engineering and regenerative medicine. However, a major challenge in creating customized vascularized spheroids is the construction of a biomimetic extracellular matrix (ECM) microenvironment. This process requires careful regulation of environmental factors, including the modulation of growth factors, the selection of culture media, and the co-culture of diverse cell types. Recent advancements in biofabrication have expanded the potential applications of vascularized spheroids. The integration of microfluidic technology with bioprinting offers promising solutions to existing challenges in regenerative medicine. Spheroids have been widely studied for their ability to promote vascularization in in vitro models. This review highlights the latest developments in vascularized biofabrication, and systematically explores strategies for constructing vascularized spheroids. We provide a comprehensive analysis of spheroid applications in specific tissues, including skin, liver, bone, cardiac, and tumor models. Finally, the review addresses the major challenges and future directions in the field.
Collapse
Affiliation(s)
- Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Yue T, Yang H, Wang Y, Jiang N, Yin H, Lu X, Liu N, Xu Y. A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions. CYBORG AND BIONIC SYSTEMS 2025; 6:0207. [PMID: 40028235 PMCID: PMC11870090 DOI: 10.34133/cbsystems.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 03/05/2025] Open
Abstract
Tissues larger than 400 μm in size lacking microvascular networks cannot survive for long periods of time in vitro. The development of microfluidic technology provides an efficient research tool for constructing microvascular models in vitro. However, traditional single-layer microfluidic chips faced the limitation of spatial layout and could not provide diverse fluidic environments within a single chip. In this paper, we present a novel microfluidic chip design with a 3-layer configuration that utilizes a polycarbonate (PC) porous membrane to separate the culture fluid channels from the tissue chambers, featuring flexibly designable multitissue chambers. PC porous membranes act as the capillary in the vertical direction, enabling precise hydrogel patterning and successfully constructing a microfluidic environment suitable for microvascular tissue growth. The chip demonstrates the ability to build microvascular networks of different shapes such as triangle, rectangle, and inverted triangle on a single chip for more than 10 days. The microvascular networks cultured for 12 days were successfully perfused with 70-kDa fluorescein isothiocyanate, which indicated that the generated networks had good barrier properties. A correlation between tissue chamber shape and shear stress was demonstrated using COMSOL, and a preliminary validation of the flow direction of interstitial flow and the important effect of shear stress on microvascular growth was demonstrated by vascularization experiments. This flexible and scalable design is ideal for culturing multiple vascularized organ tissues on a single microfluidic chip, as well as for studying the effects of different fluidic factors on microvascular growth.
Collapse
Affiliation(s)
- Tao Yue
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
- School of Future Technology,
Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology,
Tongji University, Shanghai, China
| | - Huiying Yang
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
| | - Yue Wang
- School of Future Technology,
Shanghai University, Shanghai, China
| | - Ning Jiang
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
| | - Hongze Yin
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
| | - Xiaoqi Lu
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
| | - Na Liu
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology,
Tongji University, Shanghai, China
| | - Yichun Xu
- National Engineering Research Center for Biochip at Shanghai, Shanghai, China
- Shanghai Biochip Corporation (SBC), Shanghai, China
| |
Collapse
|
3
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Liu M, Wu A, Liu J, Huang HW, Li Y, Shi Q, Huang Q, Wang H. Arched microfluidic channel for the promotion of axonal growth performance. iScience 2024; 27:110885. [PMID: 39319262 PMCID: PMC11419798 DOI: 10.1016/j.isci.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Uniformly distributed fluid shear stress can promote axonal growth, aiding in the efficient construction of functional neural interfaces. However, challenges remain in the construction of the micro-scale environment with a uniform fluidic stress distribution. In this study, we designed and fabricated a microfluidic chip with arched-section microfluidic channels (AMCs) to increase primary cortical neuron growth rate and terminal number by constructing a uniform-stress-distributed environment. Inspired by the three-dimensional (3D) microenvironment where cerebrospinal-fluid-contacting neurons are located, the surface curvature of the traditional rectangular-section microfluidic channel (RMC) was adjusted to construct structures with 3D curved surfaces. Compared with those on the RMC chips, the average growth rate of the axons on the AMC chips increased by 8.9% within 19 days, and the average number of terminals increased by 14.9%. This platform provides a structure that can effectively promote neuron growth and has potential in constructing more complex functional neural interfaces.
Collapse
Affiliation(s)
- Menghua Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yang Li
- Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|