1
|
Wang C, Zhang L, Shang L. Compartmentalized Biomolecular Condensates via Controlled Nucleation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0505. [PMID: 39421214 PMCID: PMC11483777 DOI: 10.34133/research.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
This commentary underscores the importance and implications of the study "Biomolecular condensates with complex architectures via controlled nucleation," led by Jan C. M. van Hest and Tuomas P. J. Knowles, published in Nature Chemical Engineering. The research team developed a novel system to investigate the structure of biological condensates using quaternized amylose, carboxymethylated amylose, and single-stranded DNA. They successfully created multiphase droplets with distinct dense phases and demonstrated that droplet architecture can be controlled through temperature and salt concentration adjustments. This study offers valuable insights into the formation and function of membraneless organelles in cells and suggests promising applications for designing biomimetic materials and therapeutic strategies.
Collapse
Affiliation(s)
- Chong Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| | - Linyi Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhu D, Liang H, Du Z, Liu Q, Li G, Zhang W, Wu D, Zhou X, Song Y, Yang C. Altered Metabolism and Inflammation Driven by Post-translational Modifications in Intervertebral Disc Degeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0350. [PMID: 38585329 PMCID: PMC10997488 DOI: 10.34133/research.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.
Collapse
Affiliation(s)
- Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qian Liu
- College of Life Sciences,
Wuhan University, Wuhan 430072, Hubei Province, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
3
|
Li D, Yu Q, Wu R, Tuo Z, Zhu W, Wang J, Shao F, Ye L, Ye X, Yoo KH, Ke M, Yang Y, Wei W, Feng D. Chronobiology of the Tumor Microenvironment: Implications for Therapeutic Strategies and Circadian-Based Interventions. Aging Dis 2024; 16:645-657. [PMID: 38607733 PMCID: PMC11964438 DOI: 10.14336/ad.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous research works have emphasized the critical role that circadian rhythm plays in the tumor microenvironment (TME). The goal of clarifying chrono-pharmacological strategies for improving cancer treatment in clinical settings is a continuous endeavor. Consequently, to enhance the use of time-based pharmaceutical therapies in oncology, combining existing knowledge on circadian rhythms' roles within the TME is essential. This perspective elucidates the functions of circadian rhythms in the TME across various stages of cancer development, progression, and metastasis. Specifically, aging, angiogenesis, and inflammation are implicated in modulating circadian rhythm within the TME. Furthermore, circadian rhythm exerts a profound influence on current cancer treatments and thereby generates chronotheray to manage tumors. From a TME perspective, circadian rhythm offers promising opportunities for cancer prevention and treatment; nevertheless, further study is needed to address unanswered scientific problems.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Korea.
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| |
Collapse
|
4
|
Li L, Wang J, Zhong X, Jiang Y, Pei G, Yang X, Zhang K, Shen S, Jin X, Sun G, Su C, Chen S, Yin H. ADP-Hep-Induced Liquid Phase Condensation of TIFA-TRAF6 Activates ALPK1/TIFA-Dependent Innate Immune Responses. RESEARCH (WASHINGTON, D.C.) 2024; 7:0315. [PMID: 38357697 PMCID: PMC10865109 DOI: 10.34133/research.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-β-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology,
Peking University, Beijing, China
| | - Xincheng Zhong
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yaoyao Jiang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Life Sciences,
Tsinghua University, Beijing, 100084, China
| | - Xikang Yang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Siqi Shen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xue Jin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaoge Sun
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Chaofei Su
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|