1
|
Automatic Detection of Atrial Fibrillation in ECG Using Co-Occurrence Patterns of Dynamic Symbol Assignment and Machine Learning. SENSORS 2021; 21:s21103542. [PMID: 34069717 PMCID: PMC8161329 DOI: 10.3390/s21103542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
Early detection of atrial fibrillation from electrocardiography (ECG) plays a vital role in the timely prevention and diagnosis of cardiovascular diseases. Various algorithms have been proposed; however, they are lacking in considering varied-length signals, morphological transitions, and abnormalities over long-term recordings. We propose dynamic symbolic assignment (DSA) to differentiate a normal sinus rhythm (SR) from paroxysmal atrial fibrillation (PAF). We use ECG signals and their interbeat (RR) intervals from two public databases namely, AF Prediction Challenge Database (AFPDB) and AF Termination Challenge Database (AFTDB). We transform RR intervals into a symbolic representation and compute co-occurrence matrices. The DSA feature is extracted using varied symbol-length V, word-size W, and applied to five machine learning algorithms for classification. We test five hypotheses: (i) DSA captures the dynamics of the series, (ii) DSA is a reliable technique for various databases, (iii) optimal parameters improve DSA’s performance, (iv) DSA is consistent for variable signal lengths, and (v) DSA supports cross-data analysis. Our method captures the transition patterns of the RR intervals. The DSA feature exhibit a statistically significant difference in SR and PAF conditions (p < 0.005). The DSA feature with W=3 and V=3 yield maximum performance. In terms of F-measure (F), rotation forest and ensemble learning classifier are the most accurate for AFPDB (F = 94.6%) and AFTDB (F = 99.8%). Our method is effective for short-length signals and supports cross-data analysis. The DSA is capable of capturing the dynamics of varied-lengths ECG signals. Particularly, the optimal parameters-based DSA feature and ensemble learning could help to detect PAF in long-term ECG signals. Our method maps time series into a symbolic representation and identifies abnormalities in noisy, varied-length, and pathological ECG signals.
Collapse
|
2
|
Ganapathy N, Swaminathan R, Deserno TM. Adaptive learning and cross training improves R-wave detection in ECG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105931. [PMID: 33508772 DOI: 10.1016/j.cmpb.2021.105931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Automated R-wave detection plays a vital role in electrocardiography (ECG) and ECG-based computer-aided diagnosis. Recently, a multi-level one-dimensional (1D) deep learning approach was presented that shows good performance as compared to traditional methods. METHODS In this paper, we present several improvements of the multi-level 1D convolutional neural network (CNN)-based deep learning approach using: (i) adaptive deep learning, (ii) cross-database training, and (iii) cross-lead training. For this, we consider ECG signals from four publicly available databases: MIT-BIH, INCART, TELE, and SDDB, having 109,404, 175,660, 6,708, and 1,684,447 annotated beats, respectively. Except for TELE, all databases provide at least two-lead recordings. To evaluate the improvements, experiments are performed with adaptive k-times cross-trained databases validation scheme (k = 5). The hypothesis tested are: (i) the improvements outperform the state-of-the-art, (ii) cross-database training and adaptive deep learning contribute, and (iii) additional databases or cross-lead training further improves the results. RESULTS Our proposed approach outperforms the state-of-the-art. In terms of F-measure, F = 99.75% and F = 95.25% is obtained for the MIT-BIH and TELE databases, respectively. Further, cross-database training (F = 98.02%) is found to be more effective than training on individual databases (F = 97.33%). The performance of our approach further improves when additional databases and different leads are used for training. CONCLUSION Existing state-of-the-art methods perform low on noisy and pathological signals. Adaptive cross-data training identifies the optimal model. Using multiple datasets and leads allows analyzing noisy, pathological and mobile-recorded long-term ECG signals without ground truths. These conclusions are based on the comprehensive evaluation of four different databases, and in total, about 4.5 million annotated beats.
Collapse
Affiliation(s)
- Nagarajan Ganapathy
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.
| | - Ramakrishnan Swaminathan
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.
| | - Thomas M Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany.
| |
Collapse
|
3
|
Vavrinsky E, Subjak J, Donoval M, Wagner A, Zavodnik T, Svobodova H. Application of Modern Multi-Sensor Holter in Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2663. [PMID: 32392697 PMCID: PMC7273207 DOI: 10.3390/s20092663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Jan Subjak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Alexandra Wagner
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| | - Tomas Zavodnik
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Helena Svobodova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| |
Collapse
|
4
|
Castro-Lopez O, Lopez-Barron DE, Vega-Lopez IF. Next-generation heartbeat classification with a column-store DBMS and UDFs. J Intell Inf Syst 2019. [DOI: 10.1007/s10844-019-00557-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
OBJECTIVES Deep learning models such as convolutional neural networks (CNNs) have been applied successfully to medical imaging, but biomedical signal analysis has yet to fully benefit from this novel approach. Our survey aims at (i) reviewing deep learning techniques for biosignal analysis in computer- aided diagnosis; and (ii) deriving a taxonomy for organizing the growing number of applications in the field. METHODS A comprehensive literature research was performed using PubMed, Scopus, and ACM. Deep learning models were classified with respect to the (i) origin, (ii) dimension, and (iii) type of the biosignal as input to the deep learning model; (iv) the goal of the application; (v) the size and (vi) type of ground truth data; (vii) the type and (viii) schedule of learning the network; and (ix) the topology of the model. RESULTS Between January 2010 and December 2017, a total 71 papers were published on the topic. The majority (n = 36) of papers are on electrocariography (ECG) signals. Most applications (n = 25) aim at detection of patterns, while only a few (n = 6) at predection of events. Out of 36 ECG-based works, many (n = 17) relate to multi-lead ECG. Other biosignals that have been identified in the survey are electromyography, phonocardiography, photoplethysmography, electrooculography, continuous glucose monitoring, acoustic respiratory signal, blood pressure, and electrodermal activity signal, while ballistocardiography or seismocardiography have yet to be analyzed using deep learning techniques. In supervised and unsupervised applications, CNNs and restricted Boltzmann machines are the most and least frequently used, (n = 34) and (n = 15), respectively. CONCLUSION Our key-code classification of relevant papers was used to cluster the approaches that have been published to date and demonstrated a large variability of research with respect to data, application, and network topology. Future research is expected to focus on the standardization of deep learning architectures and on the optimization of the network parameters to increase performance and robustness. Furthermore, application-driven approaches and updated training data from mobile recordings are needed.
Collapse
Affiliation(s)
- Nagarajan Ganapathy
- Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig — Institute of Technology and Hannover Medical School, Braunschweig, Germany
- Indian Institute of Technology Madras, Chennai, India
| | | | - Thomas M. Deserno
- Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig — Institute of Technology and Hannover Medical School, Braunschweig, Germany
| |
Collapse
|
6
|
Haux R, Kulikowski CA, Bakken S, de Lusignan S, Kimura M, Koch S, Mantas J, Maojo V, Marschollek M, Martin-Sanchez F, Moen A, Park HA, Sarkar IN, Leong TY, McCray AT. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics. Methods Inf Med 2017; 56:e1-e10. [PMID: 28119991 PMCID: PMC5388922 DOI: 10.3414/me16-01-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/17/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. OBJECTIVES To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? METHODS Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. RESULTS A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. CONCLUSIONS The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.
Collapse
Affiliation(s)
- Reinhold Haux
- Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig and Hannover Medical School, Germany
| | - Casimir A. Kulikowski
- Department of Computer Science, Rutgers – The State University of New Jersey, NJ, USA
| | - Suzanne Bakken
- School of Nursing and Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Simon de Lusignan
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Michio Kimura
- Medical Informatics Department, School of Medicine, Hamamatsu University, Shizuoka, Japan
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics, Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
| | - John Mantas
- Health Informatics Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Victor Maojo
- Biomedical Informatics Group, Artificial Intelligence Department, Universidad Politecnica de Madrid, Madrid, Spain
| | - Michael Marschollek
- Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig and Hannover Medical School, Germany
| | - Fernando Martin-Sanchez
- Department of Healthcare Policy and Research, Division of Health Informatics, Weill Cornell Medicine, New York, NY, USA
| | - Anne Moen
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Health Sciences, University College of South East Norway, Drammen, Norway
| | - Hyeoun-Ae Park
- College of Nursing and Systems Biomedical Informatics Research Center, Seoul National University, Seoul, Republic of Korea
| | - Indra Neil Sarkar
- Center for Biomedical Informatics, Brown University, Providence, RI, USA
| | - Tze Yun Leong
- Medical Computing Laboratory, School of Computing, National University of Singapore, Singapore
- School of Information Systems, Singapore Management University, Singapore
| | - Alexa T. McCray
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kashif M, Jonas SM, Deserno TM. Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation. IEEE Trans Biomed Eng 2016; 64:2163-2175. [PMID: 27913321 DOI: 10.1109/tbme.2016.2633277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. METHODS We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. RESULTS Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. CONCLUSION More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. SIGNIFICANCE STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data.
Collapse
|
8
|
Baumgartner C, Caiani EG, Dickhaus H, Kulikowski CA, Schiecke K, van Bemmel JH, Witte H. Discussion of "Computational Electrocardiography: Revisiting Holter ECG Monitoring". Methods Inf Med 2016; 55:312-21. [PMID: 27406570 DOI: 10.3414/me15-15-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Computational Electrocardiography: Revisiting Holter ECG Monitoring" written by Thomas M. Deserno and Nikolaus Marx. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of Deserno and Marx. In subsequent issues the discussion can continue through letters to the editor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Herbert Witte
- Herbert Witte, Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich-Schiller University, Bachstraße 18, 07743 Jena, E-mail:
| |
Collapse
|
9
|
Yana K. Editorial for "Computational Electrocardiography: Revisiting Holter ECG Monitoring". Methods Inf Med 2016; 55:303-4. [PMID: 27406701 DOI: 10.3414/me15-25-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuo Yana
- Kazuo Yana, Hosei University, Department of Applied Informatics, School of Science and Engineering, 3-7-2 Kajino-cho, Koganei Tokyo, 184-8584, Japan, E-mail:
| |
Collapse
|