1
|
Ferreira RL, Parente Rocha JA, Leite VRMC, Moraes D, Graziani D, Pranchevicius MCDS, Soares CMDA. Proteomic profile of multidrug-resistant Serratia marcescens under meropenem challenge. Microb Pathog 2025; 204:107570. [PMID: 40222567 DOI: 10.1016/j.micpath.2025.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Serratia marcescens is an opportunistic bacterium implicated in the prevalence of serious nosocomial infections and increased outbreaks in Intensive Care Units (ICUs) and Neonatal Intensive Care Units (NICUs). S. marcescens strains are resistant to several antimicrobial classes and express numerous virulence factors that promote pathogenicity. In the present study, the proteomic profile of the multidrug-resistant (MDR) S. marcescens clinical isolate challenged with the antimicrobial meropenem was evaluated. The proteins obtained were analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MSE). A total of 199 induced proteins were identified revealing that multidrug-resistant S. marcescens promotes increasing of proteins related to energy metabolism and efflux pump and decreases synthesis of proteins related to oxidative stress response and cell mobility upon meropenem challenge, shedding some light on the relationship between expressed proteins and bacterial pathogenicity after antimicrobial induction.
Collapse
Affiliation(s)
- Roumayne Lopes Ferreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Juliana Alves Parente Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Vanessa Rafaela Milhomem Cruz Leite
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Dayane Moraes
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Daniel Graziani
- Laboratório de Avaliação de Moléculas, Células e Tecidos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Khalifa HO, Kayama S, Elbediwi M, Yu L, Hayashi W, Sugawara Y, Mohamed MYI, Ramadan H, Habib I, Matsumoto T, Sugai M. Genetic basis of carbapenem-resistant clinical Serratia marcescens in Japan. J Glob Antimicrob Resist 2025; 42:28-36. [PMID: 39900178 DOI: 10.1016/j.jgar.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
OBJECTIVE To investigate the genetic basis of carbapenem resistance in clinical Serratia marcescens isolates collected from patients in Japan between 1994 and 2016. A total of 5135 clinical isolates of S. marcescens were recovered from different medical centres across Japan, identified in central laboratories, and tested for antimicrobial agents using the broth microdilution method. METHODS All the isolates that showed intermediate or resistant phenotypes for at least one carbapenem antibiotic were confirmed by antimicrobial susceptibility testing and for carbapenemase production by the modified carbapenem inactivation method. Furthermore, full genetic characterization was performed by whole genome sequencing for all the isolates. RESULTS Based on our findings, 27 isolates (0.53%) exhibited resistance to ertapenem and/or meropenem. Among these, 10 isolates were phenotypically confirmed as carbapenemase producers using the modified carbapenem inactivation method test. The isolates were resistant to a wide range of antibiotics including β-lactams (48.1%-100%), two fluoroquinolones (77.8%-88.9%), tigecycline and minocycline (70.4% each), and sulfamethoxazole-trimethoprim (55.6%). Whole-genome sequencing was conducted on all carbapenem-resistant strains, uncovering blaIMP in eight isolates, comprising seven with blaIMP-1 and one with blaIMP-11, alongside multiple antimicrobial resistance determinants. Importantly, the phylogenomic comparison with international S. marcescens isolates revealed genetic relatedness and potential cross-border transmission events. CONCLUSIONS Our findings underscore the importance of enhanced surveillance and infection control measures to mitigate the dissemination of multidrug-resistant pathogens, emphasizing the need for international collaboration and coordinated efforts to address antimicrobial resistance on a global scale.
Collapse
Affiliation(s)
- Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany; Animal Health Research Institute, Agriculture Research Centre, Cairo, Egypt
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirate
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirate
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Kurnianto MA, Adesina PA, Rini DM. Potential and application of tandem mass spectrometry (MS/MS) in the analysis and identification of novel bacteriocins: a review. Int J Food Sci Technol 2024; 59:8943-8960. [DOI: 10.1111/ijfs.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 01/21/2025]
Abstract
Abstract
Bacteriocins are antimicrobial peptides synthesised ribosomally by Gram-positive or Gram-negative bacteria to gain a competitive advantage. The majority of bacteriocins are derived from Gram-positive bacteria, with lactic acid bacteria being the most common source. Because they are considered ‘natural’, there is currently significant development of bacteriocins for application as food preservative agents. As a preservative agent, bacteriocin activity is highly dependent on purity, down to the amino acid profile and sequence. Therefore, bacteriocin identification is important. Currently, MS is a cutting-edge tool in bacteriocin identification. This method has high selectivity, sensitivity and resolution. To the best of our knowledge, systematic reviews focusing on the application of MS for bacteriocin identification are currently limited. In light of this, the objective of this study is to provide a comprehensive review and summary of MS technologies in bacteriocin research, with a particular focus on the discovery and characterisation of novel sources of bacteriocin. Additionally, studies related to the discovery of bacteriocins from various sources, their role as antimicrobial agents, and their synthesis are emphasised. Thus, this study presents a comprehensive analysis of the advantages, limitations, and future perspectives of the methods employed.
Collapse
Affiliation(s)
- Muhammad Alfid Kurnianto
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
- Innovation Center of Appropriate Food Technology for Lowland and Coastal Area, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
| | - Precious Adedayo Adesina
- National Center for Advancing Translational Sciences, Division for Pre-Clinical Innovation, National Institutes of Health , Bethesda, Maryland, 20892-4874 ,
| | - Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
- Innovation Center of Appropriate Food Technology for Lowland and Coastal Area, Universitas Pembangunan Nasional Veteran Jawa Timur , Surabaya, 60294 ,
| |
Collapse
|
4
|
Fang P, Yu S, Ma X, Hou L, Li T, Gao K, Wang Y, Sun Q, Shang L, Liu Q, Nie M, Yang J. Applications of tandem mass spectrometry (MS/MS) in antimicrobial peptides field: Current state and new applications. Heliyon 2024; 10:e28484. [PMID: 38601527 PMCID: PMC11004759 DOI: 10.1016/j.heliyon.2024.e28484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) constitute a group of small molecular peptides that exhibit a wide range of antimicrobial activity. These peptides are abundantly present in the innate immune system of various organisms. Given the rise of multidrug-resistant bacteria, microbiological studies have identified AMPs as potential natural antibiotics. In the context of antimicrobial resistance across various human pathogens, AMPs hold considerable promise for clinical applications. However, numerous challenges exist in the detection of AMPs, particularly by immunological and molecular biological methods, especially when studying of newly discovered AMPs in proteomics. This review outlines the current status of AMPs research and the strategies employed in their development, considering resent discoveries and methodologies. Subsequently, we focus on the advanced techniques of mass spectrometry for the quantification of AMPs in diverse samples, and analyzes their application, advantages, and limitations. Additionally, we propose suggestions for the future development of tandem mass spectrometry for the detection of AMPs.
Collapse
Affiliation(s)
- Panpan Fang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Lian Hou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Tiewei Li
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Yingyuan Wang
- Department of Neonatal Intensive Care Unit, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Qianqian Sun
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Lujun Shang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550004, PR China
| | - Qianqian Liu
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Manjie Nie
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| |
Collapse
|
5
|
Bagewadi ZK, Yunus Khan T, Gangadharappa B, Kamalapurkar A, Mohamed Shamsudeen S, Yaraguppi DA. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach. Saudi J Biol Sci 2023; 30:103753. [PMID: 37583871 PMCID: PMC10424208 DOI: 10.1016/j.sjbs.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Bhavya Gangadharappa
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karnataka 560054, India
| | - Ankita Kamalapurkar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
6
|
Adedoyin FT, Sridhar BBM, Rosenzweig JA. Impact of metal exposure on environmentally isolated Serratia marcescens' growth, oxidative-stress resistance, biofilm formation, and proliferation in eukaryotic co-culture models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114677. [PMID: 36841082 DOI: 10.1016/j.ecoenv.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Environmental metals can be noxious to the surrounding biota, indirectly impact freshwater habitats, and also impact microbiological communities. In this study, zinc (Zn) (55.5 mg/kg), manganese (Mn) (863.4 mg/kg) and lead (Pb) (17.5 mg/kg) levels measured in Houston watershed flood plain soil samples were higher than environmental agencies' thresholds. To investigate the effects of metal exposures, an environmentally isolated Serratia marcescens (SME), etiological agent of endocarditis and respiratory infections, and its reference strain (SMR) were exposed to Pb, Zn, and Mn, and subsequent oxidative stress responses and biofilm production were measured. Not surprisingly, SME was less sensitive to all 3 metal exposures than was SMR. Interestingly, SME produced increased biofilm and was more resistant to oxidative stress in the presence of Zn and Pb than SMR. In a 6 h lung infection model using BAES-2B cells, SME exhibited greater proliferation than SMR in all metal challenges. Similarly, in our HT29 gut infection model, SME out-proliferated SMR when challenged with Pb and Mn following the 6 h infection. Taken together, SME was better able to withstand environmental stressors than SMR, suggesting increased virulence potential of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Folasade T Adedoyin
- Department of Environmental and Interdisciplinary Science, Texas Southern University, USA
| | | | | |
Collapse
|