1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Evans LMP, Gawron J, Sim FJ, Feltri ML, Marziali LN. Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease. PLoS One 2024; 19:e0314858. [PMID: 39636943 PMCID: PMC11620608 DOI: 10.1371/journal.pone.0314858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.
Collapse
Affiliation(s)
- Lisa Marie P. Evans
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Joseph Gawron
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Biometra Department and IRCcs Carlo Besta, Università degli Studi di Milano, Milano, Italy
| | - Leandro N. Marziali
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
3
|
Evans LMP, Gawron J, Sim FJ, Feltri ML, Marziali LN. Human iPSC-derived myelinating organoids and globoid cells to study Krabbe Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604372. [PMID: 39091729 PMCID: PMC11291050 DOI: 10.1101/2024.07.19.604372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.
Collapse
Affiliation(s)
- Lisa Marie P Evans
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Joseph Gawron
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Università degli studi di Milano, Biometra department and IRCcs Carlo Besta, Milano 20133, Italy
| | - Leandro N Marziali
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Maghazachi AA. Globoid Cell Leukodystrophy (Krabbe Disease): An Update. Immunotargets Ther 2023; 12:105-111. [PMID: 37928748 PMCID: PMC10625317 DOI: 10.2147/itt.s424622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Globoid cell leukodystrophy or Krabbe is a disease that affects children as well as adults who have mutations in the gene encoding the enzyme galactosylceramidase/galctocerebrosidase (GALC), resulting in the deposition of the toxic lipid D-galactosyl-beta1-1' sphingosine (GalSph or psychosine). Several therapeutic modalities were used to treat patients with Krabbe disease, including hematopoietic stem cell transplantation, enzyme replacement therapy, autophagy activators, intravenous immunoglobulin, and inhibitors of the Pyroptosis process, among many other approaches. In this article, I will briefly discuss the disease in both human and animal model, describe recent clinical observations as well as methods utilizing genetic analysis for diagnosis, and finally review recent advances in treating this rare and devastating disease.
Collapse
|
6
|
Herdt AR, Peng H, Dickson DW, Golde TE, Eckman EA, Lee CW. Brain Targeted AAV1-GALC Gene Therapy Reduces Psychosine and Extends Lifespan in a Mouse Model of Krabbe Disease. Genes (Basel) 2023; 14:1517. [PMID: 37628569 PMCID: PMC10454254 DOI: 10.3390/genes14081517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken β-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.
Collapse
Affiliation(s)
- Aimee R. Herdt
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Hui Peng
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A. Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Chris W. Lee
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| |
Collapse
|
7
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
8
|
Gupta AO, Raymond G, Pierpont RI, Kemp S, McIvor RS, Rayannavar A, Miller B, Lund TC, Orchard PJ. Treatment of cerebral adrenoleukodystrophy: allogeneic transplantation and lentiviral gene therapy. Expert Opin Biol Ther 2022; 22:1151-1162. [DOI: 10.1080/14712598.2022.2124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Gerald Raymond
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rene I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC - University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota
| | | | - Bradley Miller
- Division of Pediatric Endocrinology, University of Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| |
Collapse
|
9
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
10
|
Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, Buza EL, Chichester J, Dyer C, Bagel J, Vite CH, Bradbury AM, Wilson JM. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum Gene Ther 2022; 33:499-517. [PMID: 35333110 PMCID: PMC9142772 DOI: 10.1089/hum.2021.245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianne A Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlong Jian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristofer Michalson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas W Mitchell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Rafi MA. Krabbe disease: A personal perspective and hypothesis. BIOIMPACTS : BI 2022; 12:3-7. [PMID: 35087711 PMCID: PMC8783082 DOI: 10.34172/bi.2021.23931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 09/18/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Krabbe disease (KD) or globoid cell leukodystrophy (GLD) is one of the lysosomal disorders affecting central and peripheral nervous systems (CNS and PNS). It is caused by mutations on the galactocerebrosidase (GALC) gene. Affected individuals accumulate undegraded substrates and suffer from neuroinflammation. Methods: Hematopoietic stem cell transplantation (HSCT) has been partially successful in treating patients with KD when accomplished prior to the onset of symptoms. The success is credited to the ability of the hematopoietic stem cells in providing some GALC enzyme to the CNS and eradicating potential neuroinflammation. Combination of the HSCT with some other GALC-providing strategies has shown synergistic effects in the treatment of the mouse model of this disease. Results: Here, the possibility of eliminating HSCT in the treatment of human patients and replacing it with a single therapy that will provide sufficient GALC enzyme to the nervous systems is suggested. Such treatment, if started during the asymptomatic stage of the disease, not only may eradicate the enzyme deficiency, but may also keep any neuroinflammation at bay. Conclusion: Successful treatment of the KD may be possible by restoring consistent and sufficient GALC expression in CNS and PNS.
Collapse
|
12
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Wenger DA, Luzi P, Rafi MA. Advances in the Diagnosis and Treatment of Krabbe Disease. Int J Neonatal Screen 2021; 7:57. [PMID: 34449528 PMCID: PMC8396024 DOI: 10.3390/ijns7030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Krabbe disease is an autosomal recessive leukodystrophy caused by pathogenic variants in the galactocerebrosidase (GALC) gene. GALC activity is needed for the lysosomal hydrolysis of galactosylceramide, an important component of myelin. While most patients are infants, older patients are also diagnosed. Starting in 1970, a diagnosis could be made by measuring GALC activity in leukocytes and cultured cells. After the purification of GALC in 1993, the cDNA and genes were cloned. Over 260 disease-causing variants as well as activity lowering benign variants have been identified. While some pathogenic variants can be considered "severe," others can be considered "mild." The combination of alleles determines the type of Krabbe disease a person will have. To identify patients earlier, newborn screening (NBS) has been implemented in several states. Low GALC activity in this screening test may indicate a diagnosis of Krabbe disease. Second tier testing as well as neuro-diagnostic studies may be required to identify those individuals needing immediate treatment. Treatment of pre-symptomatic or mildly symptomatic patients at this time is limited to hematopoietic stem cell transplantation. Treatment studies using the mouse and dog models have shown that combining bone marrow transplantation with intra-venous gene therapy provides the best outcomes in terms of survival, behavior, and preservation of normal myelination in the central and peripheral nervous systems. With earlier diagnosis of patients through newborn screening and advances in treatment, it is hoped that more patients will have a much better quality of life.
Collapse
Affiliation(s)
- David A Wenger
- Lysosomal Diseases Testing Laboratory, Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, PA 19107, USA; (P.L.); (M.A.R.)
| | | | | |
Collapse
|
14
|
LeVine SM, Tsau S. Substrate Reduction Therapy for Krabbe Disease: Exploring the Repurposing of the Antibiotic D-Cycloserine. Front Pediatr 2021; 9:807973. [PMID: 35118033 PMCID: PMC8804370 DOI: 10.3389/fped.2021.807973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease that is caused by a deficiency in galactosylceramidase. Infantile onset disease is the most common presentation, which includes progressive neurological deterioration with corresponding demyelination, development of globoid cells, astrocyte gliosis, etc. Hemopoietic stem cell transplantation (HSCT) is a disease modifying therapy, but this intervention is insufficient with many patients still experiencing developmental delays and progressive deterioration. Preclinical studies have used animal models, e.g., twitcher mice, to test different experimental therapies resulting in developments that have led to progressive improvements in the therapeutic impact. Some recent advances have been in the areas of gene therapy and substrate reduction therapy (SRT), as well as using these in combination with HSCT. Unfortunately, new experimental approaches have encountered obstacles which have impeded the translation of novel therapies to human patients. In an effort to identify a safe adjunct therapy, D-cycloserine was tested in preliminary studies in twitcher mice. When administered as a standalone therapy, D-cycloserine was shown to lengthen the lifespan of twitcher mice in a small but significant manner. D-Cycloserine is an FDA approved antibiotic used for drug resistant tuberculosis. It also acts as a partial agonist of the NMDA receptor, which has led to numerous human studies for a range of neuropsychiatric and neurological conditions. In addition, D-cycloserine may inhibit serine palmitoyltransferase (SPT), which catalyzes the rate-limiting step in sphingolipid production. The enantiomer, L-cycloserine, is a much more potent inhibitor of SPT than D-cycloserine. Previously, L-cycloserine was found to act as an effective SRT agent in twitcher mice as both a standalone therapy and as part of combination therapies. L-Cycloserine is not approved for human use, and its potent inhibitory properties may limit its ability to maintain a level of partial inactivation of SPT that is also safe. In theory, D-cycloserine would encompass a much broader dosage range to achieve a safe degree of partial inhibition of SPT, which increases the likelihood it could advance to human studies in patients with Krabbe disease. Furthermore, additional properties of D-cycloserine raise the possibility of other therapeutic mechanisms that could be exploited for the treatment of this disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|