1
|
Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, Yu T, Lin Y, Han B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J Funct Biomater 2024; 15:233. [PMID: 39194671 PMCID: PMC11355167 DOI: 10.3390/jfb15080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Chenda Meng
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China; (H.C.); (G.S.); (T.X.); (C.M.); (Y.Z.); (T.X.); (T.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Abraham S, Gupta P, Govarthanan K, Rao S, Santra TS. Direction-oriented fiber guiding with a tunable tri-layer-3D scaffold for periodontal regeneration. RSC Adv 2024; 14:19806-19822. [PMID: 38899033 PMCID: PMC11186324 DOI: 10.1039/d4ra01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Multilayered scaffolds mimicking mechanical and biological host tissue architectures are the current prerequisites for successful tissue regeneration. We propose our tunable tri-layered scaffold, designed to represent the native periodontium for potential regenerative applications. The fused deposition modeling platform is used to fabricate the novel movable three-layered polylactic acid scaffold mimicking in vivo cementum, periodontal ligament, and alveolar bone layers. The scaffold is further provided with multiple angulated fibers, offering directional guidance and facilitating the anchorage dependence on cell adhesion. Additionally, surface modifications of the scaffold were made by incorporating coatings like collagen and different concentrations of gelatin methacryloyl to enrich the cell adhesion and proliferation. The surface characterization of our designed scaffolds was performed using tribological studies, atomic force microscopy, contact angle measurement, scanning electron microscopy, and micro-computed tomography. Furthermore, the material characterization of this scaffold was investigated by attenuated total reflectance-Fourier transformed infrared spectroscopy. The scaffold's mechanical characterization, such as strength and compression modulus, was demonstrated by compression testing. The L929 mouse fibroblast cells and MG63 human osteosarcoma cells have been cultured on the scaffold. The scaffold's superior biocompatibility was evaluated using fluorescence dye with fluorescence microscopy, scanning electron microscopy, in vitro wound healing assay, MTT assay, and flow cytometry. The mineralization capability of the scaffolds was also studied. In conclusion, our study demonstrated the construction of a multilayered movable scaffold, which is highly biocompatible and most suitable for various downstream applications such as periodontium and in situ tissue regeneration of complex, multilayered tissues.
Collapse
Affiliation(s)
- Sarin Abraham
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Kavitha Govarthanan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bengaluru Karnataka 560065 India
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
3
|
De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308848. [PMID: 38380549 PMCID: PMC11077667 DOI: 10.1002/advs.202308848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Mario Romandini
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| |
Collapse
|
4
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Reitano G, Lo Giudice A, Isola G. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. EXPLORATION OF MEDICINE 2023:215-234. [DOI: 10.37349/emed.2023.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 10/01/2024] Open
Abstract
The periodontium is an appropriate target for regeneration, as it cannot restore its function following disease. Significantly, the periodontium's limited regenerative capacity could be enhanced through the development of novel biomaterials and therapeutic approaches. Notably, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function but also on its ability to reconstruct distinct tissues and tissue interfaces, implying that the development of tissue engineering techniques can offer new perspectives for the organized reconstruction of soft and hard periodontal tissues. With their biocompatible structure and one-of-a-kind stimulus-responsive property, hydrogels have been utilized as an excellent drug delivery system for the treatment of several oral diseases. Furthermore, bioceramics and three-dimensional (3D) printed scaffolds are also appropriate scaffolding materials for the regeneration of periodontal tissue, bone, and cartilage. This work aims to examine and update material-based, biologically active cues and the deployment of breakthrough bio-fabrication technologies to regenerate the numerous tissues that comprise the periodontium for clinical and scientific applications.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Catania 95123, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Giuseppe Reitano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| |
Collapse
|
5
|
Microbial Poly(hydroxybutyrate-co-hydroxyvalerate) Scaffold for Periodontal Tissue Engineering. Polymers (Basel) 2023; 15:polym15040855. [PMID: 36850140 PMCID: PMC9962980 DOI: 10.3390/polym15040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, we fabricated three dimensional (3D) porous scaffolds of poly(hydroxybutyrate-co-hydroxyvalerate) with 50% HV content. P(HB-50HV) was biosynthesized from bacteria Cupriavidus necator H16 and the in vitro proliferation of dental cells for tissue engineering application was evaluated. Comparisons were made with scaffolds prepared by poly(hydroxybutyrate) (PHB), poly(hydroxybutyrate-co-12%hydroxyvalerate) (P(HB-12HV)), and polycaprolactone (PCL). The water contact angle results indicated a hydrophobic character for all polymeric films. All fabricated scaffolds exhibited a high porosity of 90% with a sponge-like appearance. The P(HB-50HV) scaffolds were distinctively different in compressive modulus and was the material with the lowest stiffness among all scaffolds tested between the dry and wet conditions. The human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs) cultured onto the P(HB-50HV) scaffold adhered to the scaffold and exhibited the highest proliferation with a healthy morphology, demonstrating excellent cell compatibility with P(HB-50HV) scaffolds. These results indicate that the P(HB-50HV) scaffold could be applied as a biomaterial for periodontal tissue engineering and stem cell applications.
Collapse
|